
Interaction of Game Theory and 
Machine Learning in a Connected 

World.

The number of people interacting through internet has been increasing exponentially 
over the past 10 years and is expected to increase in a similar proportion in the coming 
years. This has made the world strongly connected with people networking through the 
internet. This has therefore also seen a rise in the way markets function in the 
traditional sense with markets, commerce and auction mechanisms coming online, 
which has further lead to the development of various fields of research which lie at the 
interface of computer science, game theory and economics theory. An exciting area of 
research, Algorithmic Game Theory has emerged and is being widely studied for 
optimizing the solution concepts in game theory and further analyzing the scope of 
computer science in economics and vice versa along with the applications of game 
theory in Artificial Intelligence, networking and operations research.

On a parallel front, the advancement of the field of machine learning has made it now 
possible for us learn from the data and make powerful predictions and analysis based 
on the inferences drawn from the data. Applications of machine learning in algorithmic 
game theory have been less studied and with the growing capabilities of machine 
learning in large decentralized systems it is drawing widespread attention and exciting 
contributions from computer scientists.

The purpose of this project is three fold:

1. Description and analysis of basic as well as advanced solution concepts of game 

theory.

2. Theoretical explanation and practical implementation of machine learning 

algorithms on open source datasets.

3. Interaction of the two fields and their application in state of the art research.


Game Theory 

Game theory is defined as the mathematical study of interaction of self interested 
rational agents. This branch of study models every practical situation in the form of a 
game with several players described as agents playing the game. The inherent 
assumption is that the players interact in a manner by playing every move which is in 
their self interest. The agents have their own description of the world and act based on 
that description. 

The dominant approach to modeling an agent’s interest is utility theory. This theory 
quantifies the preferred action by the agent in situations involving a set of alternatives 
with the agent choosing the alternative with the most favorable outcome state or the 
state in which it has the maximum utility. This mapping from an existing state to the 

�1



final state with the agent’s decision taken as an input is done through the utility 
function. When the agent is uncertain about which state of world he faces, his utility is 
defined as the expected value of his utility function with respect to the appropriate 
probability distribution over states. 


Defining Games 

Every game is defined by three parameters namely:

• Players: The agents playing the game responsible for making the decisions.

• Actions: The set of possible moves the player can play.

• Payoffs: The quantified value which will be offered to the player after taking the     

decided action.

These three parameters can also be thought of answering the basic questions of Who, 
What and Why with the Player information describing the Who, Action information 
describing the What and the Payoffs describing Why the Player is motivated to take 
that specific action.


Standard Representation of Games 

Games are described in two forms, Normal Form (also know as Matrix form and 
Strategic Form) and Extensive Form.

Normal Form game definition lists what players get as a function of their action whilst 
incorporating the assumptions that the players move simultaneously and their 
strategies encode various things.

The Extensive form games on the other hand incorporate a temporal structure of the 
game and are more closer to the practical implementation of the games. The players in 
this definition move sequentially and are represented as a tree. Every player in this form 
of representation keeps track of what each player knows while making her decision.


Definition 1 (Normal-form game)� . A (finite, n-person) normal-form game is a tuple 
(N,A,u), where:

• �  is a finite set of n player, indexed by i;

• �  = �  x … x �  where �  is a finite set of actions available to player i. Each vector 
�  is called  an action profile;


• �  where �  is  a real-valued utility (or payoff) function for 
player i. 


A natural way to represent games is via an n-dimensional matrix. The normal form 
representation represents each 2-player game in the form of a matrix with the row 
player describing player 1 and the column player describing player 2. The rows 
correspond to the action profile of player 1 and the columns correspond to the action 
profile of player 2. The cells list the utility or payoff values for each player. The 
illustration of the normal form games will be specified through the fundamental 
example of Prisoner’s Dilemma.


[1]

N = {1,...,n}
A Ai An Ai
a = (ai, . . . , an) ∈ A
u = (u1, . . . , un) ui : A → R

�2



Prisoner’s Dilemma 
This is perhaps the most well-known and well-studied game.


Example 1 (Prisoner’s Dilemma) �  Two prisoner’s are on a trial for a crime and each 
one faces a choice of confessing to the crime or remaining silent. If they both remain 
silent, the authorities will not be able to prove charges against them and they will both 
serve a short prison term, say 2 years, for minor offenses. If only one of them 
confesses, his term will be reduced to 1 year and he will be used as a witness against 
the other, who in turn will get a sentence of 5 years. Finally if they both confess, they 
will both get a small break for cooperating with the authorities and will have to serve 
prison sentences of 4 years each.

Hence there are four total outcomes depending on the choices made by each of the 
two prisoner’s. The costs incurred in the four outcomes can be succinctly summarized 
in the following 2 x 2 matrix.


In it’s most general form, the Prisoner’s Dilemma is any normal-form game with payoffs 
a, b, c and d corresponding 4, 1 , 5 and 2 respectively in a manner such that c > a > d 
> b. This famous game is often thought paradoxical because it has counter intuitive 
paradoxical properties in terms of the actions taken by the players and the solution set 
of the game which will be described in the next section. 


Strategies in Normal-Form Games. 

Every player has a set of actions available and he could choose a single action and 
play it. This is called a pure strategy. However he could also randomize over his set of 
available strategies and choose a certain strategy according to a probability 
distribution. This is known as mixed strategy.

The mixed strategy for a normal form game is defined as follows:


Definition 2 (Mixed Strategy). Let (N, A, u) be a normal-form game and for any set X 
let �  be a set of probability distributions over X. Then the set of mixed strategies 

for player i is � 


[2]

Confess (Cooperate) Silent (Defect)

Confess (Cooperate) (4,4) (1,5)

Silent (Defect) (5,1) (2,2)

Player2 

� 

Player1

∏ (X )
Si = ∏ (Ai) .
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Definition 3 (Mixed-strategy profile). The set of mixed strategy profiles is the 
cartesian product of individual mixed-strategy sets, � .

Why play a mixed strategy:

• To randomize and confuse the opponent.

• Randomize when an agent is uncertain about other’s actions.

• Mixed strategies are a concise description of repeated plays.

• Mixed strategies define population dynamics.


Definition 4 (Support). The support of a mixed strategy �  for a player i is the set of 
pure strategies � .


Definition 5 (Expected utility of a mixed strategy). Given a normal-form game (N, A, 
u), the expected utility �  for a player i of the mixed-strategy profile 
� 


� 


This is intuitively determined as the probability of reaching each outcome and then we 
calculate the average of the payoffs of each outcome.


Solution Concepts in Game Theory. 

The environment with the interaction of several agents becomes very complex to 
analyze without a specific analysis technique. Therefore the tow most popular solution 
concepts namely Nash Equilibrium and Pareto Optimality help game theorists analyze 
the game and the outcome of the game based on the specific moves by the involved 
players. 


Best Response and Nash Equilibrium. 

Nash Equilibrium is one of the most standard solution concept in game theory. It 
requires the complete information of the game along with the action set profile of all the 
participating agents. The complete information of the game with the single player 
allows the player to choose the action with the maximum utility given the actions of the 
other agents. This allows the self interested agent to respond in a manner which is in 
his best interest. Therefore if every agent were to act in a manner such that her action 
were the best response to the actions of all other participating agents, we would arrive 
that solution which would be optimal for every participating agent.

The mathematical description defines �  a strategy profile 
without agent i’s strategy. Hence the complete strategy profile is described as 

S1 × … × Sn

si
{ai |si(ai) > 0}

ui
s = (s1, …, sn) is defined as

ui(s) = ∑
a∈A

ui(a)
n

∏
j=1

sj(aj) .

s−i = (s1, …, si−1, si+1, …, sn),
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� . The decision problem with player i would be to decide his action from 
the strategy profile in order to maximize her utility given � .


Definition 6 (Best Response). Player i’s best response to strategy profile �  is a 
mixed strategy �  such that �  for all strategies � .


It can also be thought as the action awe would take to maximize our utility in the light 
of the actions of others. The best response for an agent is not necessarily unique. 
However, any particular will not know what other strategies the other player will adopt 
and it is therefore not a solution concept since it does not help us identify an 
interesting set of outcomes in a general case. The solution concept however based on 
this strategy is the Nash Equilibrium.


Definition 7 (Nash Equilibrium). A strategy profile �  is a Nash 
Equilibrium if, for all agents,  i,  �  is the best response to � .

Nash equilibrium is a self-consistent or stable set of profile because no agent has any 
incentive to deviate from her current strategy. If this were not true, the agents would 
not be in equilibrium since at least one player would have the incentive to deviate from 
her current strategy. 


Domination 
Let �  be two strategies for player i and let �  be the set all possible strategy 
profiles for the other players.

Definition 8 (Strict Dominance). �  strictly dominates �  if 


� .

Definition 9 (Weak Dominance). �  weakly dominates �  if 


� .


Equilibria and Dominance 
• If one strategy dominates every other strategy, it is said to be dominant. 

• A strategy profile consisting of dominant strategy for every player is a Nash 

equilibrium.

• An equilibrium with strictly dominant strategies is unique.

• In Prisoner’s Dilemma the dominant strategy is to defect.

• Intuitively, weak Nash equilibria are less stable than strict Nash equilibria because at 

least one player has a best response to other player’s strategies that is not his 
equilibrium strategy.


• Mixed-strategy Nash equilibria are necessarily weak, while pure-strategy Nash 
equilibria may strict or weak, depending on the game. 


Theorem 1 (John F. Nash, 1951)� . Every game with a finite number of players and 
finite number of action profiles has at least one Nash equilibrium. 


s = (si−1, si)
s−i

s−i
si * ∈ Si ui(si * ,s−i) ≥ ui(si, s−i) si ∈ Si

s = (s1, …, sn)
si s−i

si and s′�i S−i

si s′�i
∀s−i ∈ S−i, ui(si, s−i) > ui(s′ �i, s−i)

si s′�i
∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′ �i, s−i)

[7]
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This theorem is motivating for the existence of either a pure strategy Nash equilibrium 
or a mixed strategy Nash equilibrium for every game. The theorem is proved using the 
Kakutani fixed-point theorem and is alternatively proved using the Brouwer fixed-point 
theorem� .


Complexity of Computing a Nash Equilibrium. 

Nash’s theorem, proved in 1951, that every game has a Nash equilibrium. This is a 
reassuring fact which states that every game, in principle, can reach a quiescent state 
in which no player has an incentive to deviate from her behavior. However there has 
been a lot research in the field of finding the efficient algorithm to find the equilibrium 
which is guaranteed to exist. 

The two algorithms for finding the Nash equilibrium are Linear Complementarity 
formulation or the Lemke-Howson algorithm �  and Support Enumeration method � . 
However these algorithms are exponential in the worst case and finding a single Nash 
equilibrium seems hard. The problem of computing the Nash equilibrium is a 
fundamental problem of algorithmic game theory and it has been proved to be PPAD 
complete. In 1991, the complexity class PPAD, for which the Brouwer’s problem is 
complete, was introduced � .


The Class PPAD 
In any directed graph with one unbalanced node (node with out degree different from 
its in degree), there must be another unbalanced node. The corresponding class is 
called PPAD for “polynomial parity arguments for directed graphs”, and it contains 
Nash and Brouwer. Brouwer was proved to be PPAD-Complete in  � . Unfortunately, 
Nash - the problem which had motivated this line of research was not shown PPAD-
Complete, though it was conjectured to be. 


[3]

[5] [6]

[8]

[8]
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It is established that computing an approximate Nash equilibrium in an r-player game is 
in PPAD. The r = 2 case was shown in � .


Theorem 2 � . r-Nash is in PPAD, for r �  2.


Alternate Solution Concepts in Normal-Form Games. 

Beyond Nash Equilibrium 
Nash equilibrium is just a way to analyze a game and to reason which strategy a player 
would choose given the strategy of other players. 


Strictly Dominated Strategies and Iterated Removal. 
• A strictly dominated strategy is never the best reply.

• It is removed since it will not be played.

• All players know this and hence it is iterated.

• Running the process to termination is called iterated removal of strictly dominated 

strategies.

A strategy �  is strictly dominated by �  if � 

The iterated removal of strictly dominant strategies gives us a lot of power by 
eliminating many of the payoffs and hence making our normal form game 
representation more succinct. 

• Process preserves Nash equilibrium.

• It can be used a preprocessing step before computing an equilibrium.

• Some games are solvable using this technique. These games are dominance 

solvable.

• The order of removal does not matter with strictly dominated strategies.


Weakly Dominated Strategies 
A strategy �  is weakly dominated by �  if �  
and �  for some � . 

�  does always at least as well and sometimes strictly better than � .

• They may or may not be the best replies.

• Order of removal can matter.

• At least one equilibrium is preserved.

• Nash equilibria is a subset of what preserves.


MAXMIN and MINMAX Strategies. 

MAXMIN Strategy. 
Player i’s maxmin strategy is a strategy that maximizes i’s worst-case payoff, in the 
situation where all other players (-i) happen to play the strategies which cause the 

[8]

[4] ≥

ai ∈ Ai a′�i ∈ Ai ui(ai, a−i) < ui(a′�i, a−i)∀a−i ∈ Ai

ai ∈ Ai a′�i ∈ Ai ui(ai, a−i) ≤ ui(a′�i, a−i)∀a−i ∈ Ai
ui(ai, a−i) < ui(a′�i, a−i) a−i ∈ Ai

a′�i ai
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greatest harm to i. The maxmin value (or safety level) of the game for player i is that 
minimum payoff guaranteed by a maxmin strategy.


Definition 10 (Maxmin). The maxmin strategy for player i is:

�  


and the maxmin value for player i is:

� 


MINMAX Strategy 

Definition 11 (Minmax). Player i’s minmax strategy against player -i in a 2-player game 
is a strategy that minimizes -i’s best-case payoff and the minmax value for player i 
against player -i is payoff � 


Theorem 3 (Minimax theorem (John von Neumann, 1928)) � . In any finite, two-
player, zero-sum game, in any Nash equilibrium, each player receives a payoff that is 
equal to both his maxmin value and his minmax value.

This theorem concludes the following for two-player zero-sum games:

1. Each player’s maxmin value is equal to his minmax value. By convention, the 

maxmin value of player 1 is called the value of the game.

2. For both players, the set of maxmin strategies coincides with set of minmax 

strategies.

3. Any maxmin strategy profile is a Nash equilibrium. Hence all Nash equilibria have 

the same payoff vector.


Perfect Information Extensive Form Games 

Normal form game does not incorporate any notion of sequence or time in the actions 
of players. The extensive form is an alternate representation of a game that makes the 
temporal structure explicit. The variants of of extensive form games are:

• Perfect Information extensive form.

• Imperfect information extensive form.


Definition 12 (Perfect-information game). A (finite) perfect-information game (in 
extensive form) is defined by the tuple (N, A, H, Z, � ) where: 
• N is a set of n players;

• A is a (single) set of actions;

• H is a set of non-terminal choice nodes;

• Z is a set of terminal choice nodes;

• �  is the action function, which assigns to each choice node a set of 

possible actions;

• �  is the player function, which assigns to each nonterminal node a player 
�  who chooses an action at that node;


arg maxsi mins−iui(si, s−i),

 maxsi mins−iui(si, s−i),

arg minsi maxs−iu−i(si, s−i),

[9]

χ,  ρ,  σ,  μ

χ : H → 2A

ρ : H → N
i ∈ N
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• �  is the successor function, which maps a choice node and an 
action to a new choice node or terminal node such that for all �  and 
� , if �  then � ;


• �  where �  is a real-valued utility function for a player i on 
the terminal nodes Z.


Strategies and Equilibria 
A pure strategy for a player in a perfect information game is a complete specification of 
which action to take at each node belonging to that player.


Definition 13 (Pure Strategies). Let G = (N, A, H Z, � ) be a perfect-
information extensive-form game. Then the pure strategies for player i consist of the 
cartesian product � 


Nash Equilibrium 
Given the new definition of pure strategy, the previous definitions of mixed strategies, 
best responses and Nash equilibrium can be reused.


Induced Normal-Form 
Every extensive form game can be converted into normal form however the converse is 
not true.


(FIGURE): Representation of a perfect information extensive form game. 

σ : H × A → H ∪ Z
h1, h2 ∈ H

a1, a2 ∈ A σ (h1, a1) = σ (h2, a2) h1 = h2 and a1 = a2
u = (u1, …, un), ui : Z → ℜ

χ,  ρ,  σ,  μ

∏
h∈H,ρ(h)=i

χ (h) .
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Theorem 4. Every (finite) perfect-information game in extensive form has a pure- 
strategy Nash equilibrium.

This result is due to Zermelo, 1913 with the intuition that since players take turns and 
everyone gets to see everything that happened thus far before making a move, it is 
never necessary to introduce randomness into action selection in order to find an 
equilibrium.


Subgame-Perfect Equilibrium 

In order to make the Nash equilibrium more intuitively correct in the extensive form 
games, the concept of subgame perfection has been introduced.


Definition 14 (Subgame). Given a perfect-information extensive-form game G, the 
subgame of G rooted at node h is the restriction of G to the descendants of h. The set 
of subgames of G consists of all the subgames of G rooted at some node in G.


Definition 15 (Subgame-perfect equilibrium). The subgame-perfect equilibrium (SPE) 
of a game G are all strategy profiles s such that for any subgame G’ of G, the 
restriction of s to G’ is a Nash equilibrium of G’.


The SPE is refinement of the Nash equilibrium for the perfect-information extensive for 
games and helps us not to reach implausible Nash equilibria. The algorithm of finding a 
subgame-perfect Nash equilibrium is known as BackwardInduction and is a recursive 
procedure which ensures each subtree of the perfect-information extensive for to be in 
Nash equilibrium. 


Pareto Optimality 

Definition 16 (Pareto Domination). Strategy profile s Pareto dominates strategy profile 
s’ if for all �  there exists some �  for which � 


Definition 17 (Pareto optimality). Strategy profile s is Pareto optimal, or strictly Pareto 
efficient, if there does not exist another strategy profile �  that Pareto dominates s.


The concept of Pareto optimally is seen as the social good. It is the most optimal 
outcome of a game as seen from an outside observer’s perspective who wants the 
socially optimal result which is in everyone’s interest. Therefore the socially good 
outcome may or may not be same to the Nash equilibria.


Repeated Games, Stochastic Games and Bayesian Games 

Repeated Games 

i ∈ N, ui(s) ≥ ui(s′ �), j ∈ N uj(s) > uj(s′�) .

s′� ∈ S
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In real-world many interactions among the agents takes place over a repeated number 
of times and the game being repeated is called the stage game. The games in theory 
may be repeated over a finite number of time or infinite number of times. These games 
respectively known as finitely repeated games and infinitely repeated games. The 
payoffs for players in repeated games are defined in terms of average rewards over the 
number of games played and the payoffs received.


Definition 18 (Average reward). Given an infinite sequence of payoffs �  for 
player i, the average reward of i is


� 


Discounted Rewards 
The problem in defining the utility of a player in the manner of average rewards is that 
even if the initial payoffs for the person are highly negative and they are compensated 
after a lot of moves, then also the utility comes out to be 1. However it is often thought 
that the initial payoffs are more important than the later payoffs. 


Definition 19 (Discounted reward). Given an infinite sequence of payoffs �  
for player i, and a discount factor �  with � , the future discounted reward of i 

is � 


Learning in Repeated Games 

As the stage game is related, the agents learn from their previous experiences and 
therefore play in a manner which they believe shall be most suitable for the situation. 
The difference between other learning techniques is that the major objective of other 
learning techniques is to learn the environment and find an optimal strategy to act in 
the environment by the single agent. Whereas in this learning technique, the agent is 
simultaneously teaching other agents as well. The learning is therefore collaborated 
with teaching. A bad learner can be a very good teacher too.

The two types of learning in repeated games:

1. Fictitious Play 
Each player maintains explicit beliefs about other player by counting the opponents 
actions and asses the opponents strategy using these counts. 

2. No-regret learning. 
The agent does not start with a learning method but with a criteria. The regret an 
experiences at time t for not not having played strategy s is � .


Definition 20 (No-regret learning). A learning rule exhibits no-regret learning if for any 
pure strategy of the agent s, it holds that  � .


r(1)
i , r(2)

i , …

lim
k→∞

∑k
j=1 r( j)

i

k
.

r(1)
i , r(2)

i , …
β 0 ≤ β ≤ 1

∞

∑
j=1

β jr( j)
i .

Rt(s) = αt − αt(s)

Pr( | lim
games→∞

Rt(s) | ≤ 0) = 1
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Equilibria of infinitely repeated games 

The famous strategies for infinitely repeated games involve a choice at every decision 
node, taking into account the history of actions and taking infinite actions. The two 
famous strategies are:

1. Tit-for-Tat 
In this strategy the agent keeps into account the previous action by the opponent and 
is good to the opponent if the previous move played by the opponent was taken by 
taking into consideration her move and the agent is bad otherwise. The first move is 
taken randomly.

2. Trigger 
The agent moves in socially optimal manner till the opponent moves in that manner. 
However if the opponent deviates from her strategy and becomes selfish, the agent 
shall play her self interested strategy till the end.


Nash Equilibria 
For repeated games, the Nash equilibria is defined by the Folk’s theorem.


Theorem 5 (Folk’s Theorem). It states that for ant strategy to be in Nash equilibrium, 
the payoff received for that strategy should be feasible and enforceable. 

Definition 21 (Feasible). A payoff profile �  is feasible if there exists 
rational non-negative �  such that for all i, we can express �  with 

� .


Definition 22 (Enforceable). A payoff profile �  is enforceable if 
� .


Stochastic Games 
A stochastic game is a generalization of repeated games where the same stage game 
is not repeated instead the agents play games from a set of normal-form games. 
Moreover, the game played at any iteration depends on the previous game played and 
on the actions taken by all agents in that game. Hence the transition from one game to 
the next is probabilistically defined. The stochastic games also generalize the concepts 
of Markov Decision Process (MDPs) where the MDP may be defined as a single agent 
stochastic game.


Bayesian Games 
Bayesian games define the uncertainty about the utility function. They are games of 
incomplete information and represent the players’ uncertainty about the game being 
played.


r = (r1, r2, …, rn)
αa ri as ∑

a∈A

αaui(a)

∑
a∈A

αa = 1

r = (r1, r2, …, rn)
∀i ∈ N,  ri ≥ vi
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 Definition 22 (Bayesian game). A Bayesian game is a tuple (N, G, P, I) where:

• N is a set of agents;

• G is a set of games with N agents each such that if g, �  then for each agent 
�  the strategy space in g is identical to the strategy space in g’.


• �  is a common prior over games, where �  is the set of all 
probabilities over G.


• �  is a set of partitions of G, one for each agent.


Bayesian Games are of immense importance in the field of artificial intelligence with 
each agent computing the opponent in the form of a bayesian agent and agent 
calculates its expected utility over the actions of other players and over the types of 
other players. 


Machine Learning 

Machine learning is the branch of computer science that uses statistical techniques to 
give computer systems the ability to “learn” with data, without being explicitly 
programmed. The agents can improve their behavior through diligent study of their own 
experiences. The machine trains itself using the training data, makes a hypothesis 
function and then tests on the test data to make the prediction accuracy. The field of 
machine learning is closely related to the field pf pattern recognition which is 
concerned with the automatic discovery of regularities in data through the use of 
computer algorithms and with the use of these regularities to take actions such as 
classifying the data into different categories. The field of machine learning is broadly 
divided into two main categories, Supervised and Unsupervised learning of which 
algorithms of supervised learning shall be discussed in the report.


Supervised Learning 
Applications in which the training data comprises examples of the input vectors along 
with their corresponding target vectors are known as supervised learning problems.

Notation 
1. �  is used to denote the input vector or the input features.

2. �  is used to denote the output vector or the target variables which are being 

predicted.

3. (� , � ) is called a training example and for the discussion, there would be m 

number of training examples {(� , � ); i = 1,…,m} is the training set.

4. �  denotes the space of input values and �  denotes the space of output values.


Hypothesis 
In formal description, the goal of supervised learning is to learn a function �  
so that h(x) is a good predictor of the corresponding value of y. This function h is called 
a hypothesis.


g′� ∈ G
i ∈ N
P ∈ ∏ (G) ∏ (G)

I = (I1, I2, …, IN)

x(i)

y(i)

x(i) y(i)

x(i) y(i)

χ γ

h : χ ↦ γ
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When the output values range is continuous, it is known as a regression problem, 
whereas when the target vector can take up only a small number of values, it known as 
a classification problem.


Linear Regression 

The motivation of this learning technique is to predict accurately the values of the 
output vectors which vary linearly with respect to the input vectors. The hypothesis 
function is therefore a linear mapping from the input space, �  to the output space �  and 
is defined as:


� 


where � ’s are the parameters (also called weights) parametrizing the hypothesis 
function. The task at hand is to learn these parameters to output a good prediction. To 
simplify the notation, �  has been introduced as the intercept term. Both �  and x 
are n dimensional vectors.


Cost Function�  
The aim of machine learning is to predict outputs as close to the actual outputs as 
possible and they are therefore trained using a maximum likelihood estimate and the 
objective is to minimize the cost function which evaluates how close the values of 
� ’s  are to � ’s. The cost function is defined as follows:


� 


This algorithm is a part of the family of algorithms known as the generalized linear 
models.


Batch Gradient Descent 
In order to arrive at the value of �  which minimizes the cost function, � , the value of 
�  is repeatedly changed till �  keeps decreasing and the update is stopped when 
any further change leads to an increase in the value of � . The update of �  is done 
according to the gradient descent algorithm, which starts with an initial �  and 
repeatedly performs the update:


� 


(This update is simultaneously performed for all j = (0,1,…,n).). �  is the learning rate. 
This is a very natural algorithm which takes a step in the direction of the steepest 
decrease in the value of J. 


It can be derived that for one training example, � . 


χ γ

h(x) =
n

∑
i=0

θixi = θT x,

θi

x0 = 1 θ

[10]

h(x(i)) y(i)

J(θ ) =
1
2

m

∑
i=1

(hθx(i)) − y(i))2 .

θ J(θ )
θ J(θ )

J(θ ) θ
θ

θj := θj − α
∂

∂θj
J(θ )

α

∂
∂θj

J(θ ) = (hθ(x) − y)xj
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For a single training example it gives the update rule:

� 


This rule is called the LMS (“least mean squares”). 

For a training set with more than one example, the following algorithm is used:


Repeat until convergence 

{


	 � 	 (for every j).


}


While gradient descent may be susceptible to local minima in general, the optimization 
problem posed here has only one global and no other local optima; thus gradient 
descent always converges to a global minimum.


Implementation 

Problem: Predict the density of wine based on the wine’s acidity.

Data Set: linearX.csv and linearY.csv are the files containing the training data with 
linearX containing the amount of acidity of the wine,  ( � ’s, � ) and linearY 
containing its density (� ’s, � ). 
Learning Rate: 0.0001

Stopping Criteria: �  such that � . 

Code 
import csv 
import numpy as np 
from numpy import genfromtxt 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
	  
x=genfromtxt('linearX.csv',delimiter=',') 
y=genfromtxt('linearY.csv',delimiter=',') 
X=np.c_[np.ones((100,1)),x] 
Y=np.c_[y] 
epsilon=0.000000001 
learning_rate=0.0001 
theta=np.zeros((2,1)) 
theta0=0 
theta1=0 
theta_x=np.array([0]) 
theta_y=np.array([0]) 
Z=np.array([]) 

θj = θj + α(y(i) − hθ(x(i)))x(i)
j .

θj = θj + α
m

∑
i=1

(y(i) − hθ(x(i)))x(i)
j

x(i) x(i) ∈ ℜ
y(i) y(i) ∈ ℜ

J(θ′�) − J(θ ) < ϵ ϵ = 0.000000001
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def cost(theta0,theta1,X,Y): 
	 theta=np.array(([theta0],[theta1])) 
	 hypothesis=np.matmul(X,theta) 
	 result=Y-hypothesis 
	 result=np.square(result) 
	 final_cost=np.sum(result) 
	 return 0.5*final_cost 
	  
hypothesis=np.matmul(X,theta) 
temp=Y-hypothesis 
temp1=np.matmul(np.transpose(X),temp) 
new_theta=theta+learning_rate*temp1 
new_theta0=new_theta[0][0] 
new_theta1=new_theta[1][0] 

while((cost(theta0,theta1,X,Y)-cost(new_theta0,new_theta1,X,Y))>epsilon): 
	 theta0=new_theta0 
	 theta1=new_theta1 
	 theta_x=np.append(theta_x,theta0) 
	 theta_y=np.append(theta_y,theta1) 
	 theta=np.array(([theta0],[theta1])) 
	 hypothesis=np.matmul(X,theta) 
	 temp=Y-hypothesis 
	 temp1=np.matmul(np.transpose(X),temp) 
	 new_theta=theta+learning_rate*temp1 
	 new_theta0=new_theta[0][0] 
	 new_theta1=new_theta[1][0] 
	  
print(theta) 
fig=plt.figure() 
ax=fig.add_subplot(111,projection='3d') 
z=np.array([]) 
for i in range(len(theta_x)): 
	 z=np.append(z,cost(theta_x[i],theta_y[i],X,Y)) 
ax.scatter(theta_x,theta_y,z) 
plt.show()


Result 
Learned parameters:

� 

� 

θ0 = 9.89620827e − 01
θ1 = 8.64285842e − 04
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Hypothesis Function 

Locally Weighted Linear Regression 
Locally Weighted Linear Regression (LWR) generalizes the the ideas of linear regression 
to model a non-parametric learning algorithm where the different training examples are 
weighed differently. The cost function is hence altered to be written as:


� .


where � ,  �  is the bandwidth parameter, this controls how fast 

the weights will off with distance.

The LWR therefore helps to fit perfectly non-linear data since every prediction depends 
on its neighboring data points.

The output is defined as � 


J(θ ) =
1
2

m

∑
i=1

w(i)(hθx(i)) − y(i))2

w(i) = exp(−
(x(i) − x)2

2τ2
) τ

y = θT x .
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Normal Equations 
The normal equations gives a beautiful mathematical derivation for finding the learning 
parameters in the linear regression model. It takes a more direct, calculus oriented 
approach to find the value of �  for which the cost function �  shall be minimized.

The input features are defined by a design matrix or the feature matrix, X, an m x n 
matrix where m is the number of training examples and n is the number of features of 
the input. �  is the output vector or the target vector. The cost function in matrix 
notation can be written in the form:


� .


Hence the derivative of the cost function is given by (using matrix calculus),

� .


To minimize � , it is equated to 0 and the value of �  that minimizes �  is:

� 


� .


Normal Equation for Locally Weighted Linear Regression 
For locally weighted linear regression, the cost function, �  can be written as:


� .


Similar to the case of the linear regression, in order to find the normal equation for the 
parameters in the case of LWR, the matrix derivative of �  is set to 0 given by:


� 

� 


      � .

Implementation 
Problem: Locally Weighted linear Regression in Normal Form.

Data Set: The data set includes two files WeightedX.csv and WeightedY.csv 
corresponding to the input and the output values respectively.

Bandwidth Parameter: �  

Code 
import numpy as np 
from numpy.linalg import inv 
import matplotlib.pyplot as plt 

x=np.genfromtxt('weightedX.csv',delimiter=',') 
y=np.genfromtxt('weightedY.csv',delimiter=',') 

X=np.c_[np.ones(len(x)),x] 
Y=np.c_[y] 

θ J(θ )

⃗y

J(θ ) =
1
2

(Xθ − ⃗y )T(Xθ − ⃗y )

▽θ J(θ ) = XT Xθ − XT ⃗y
J(θ ) θ J(θ )

XT Xθ = XT ⃗y
θ = (XT X )−1XT ⃗y

J(θ )
J(θ ) =

1
2

(Xθ − ⃗y )TW(Xθ − ⃗y )

J(θ )
▽θ J(θ ) = XTW Xθ − XTW ⃗y
XTW Xθ = XTW ⃗y
θ = (XTW X )−1XTW ⃗y

τ = 0.8

�18



theta=np.matmul(np.matmul(inv(np.matmul(X.transpose(),X)),X.transpose()),Y) 

print(theta) 

plt.plot(x,theta[0][0]+theta[1][0]*x,'r') 
plt.scatter(x,y) 
plt.show() 

def calculate_weight(x1,x,tau):	 	 	 	 #to return W for each data point 
	 return np.diag(np.exp(((x1-x)**2)/(-2*tau*tau))) 
#Linearly weighted linear regression 

weighted_hypothesis=np.array([]) 

for i in x: 
	 W=calculate_weight(i,x,0.8) 
	
theta1=np.matmul(np.matmul(np.matmul(inv(np.matmul(np.matmul(X.transpose(),W),X)),
X.transpose()),W),Y) 
	 weighted_hypothesis=np.append(weighted_hypothesis,theta1[0][0]+theta1[1]
[0]*i) 

#print(weighted_hypothesis)	  
plt.plot(x,weighted_hypothesis,'r') 
plt.scatter(x,y) 
plt.show() 

Result 
Learned Parameters for linear regression using Normal Equations.

� 

� 


(The results given below are in the plots of linear regression curve using the Normal 
Equation and the locally weighted linear regression using Normal Equation respectively.)


θ0 = 0.32767322
θ1 = 0.17531247
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Classification 
The classification problem is just like the regression problem with the only exception 
that the output vector can take values from a specific range of outputs rather than 
continuous values. For input variables, the corresponding outputs are called labels and 
the classification algorithms may be multi-label or binary classification which separates 
the output into two classes 1 and 0, which are also referred to as positive class or 
negative class respectively.


Logistic Regression 
In logistic regression the The hypothesis function is defined as:


� ,


where


� 


This is called the logistic or the sigmoid function and enforces the hypothesis to remain 
bounded between 0 and 1.


For logistic regression, the assumptions taken are:

� 

� 

where the first equation is read as, probability of y= 1, given x and parametrized by � .

This can be written more compactly as :

� .

Assuming the m training examples to be generated independently, the likelihood of the 
parameters is written as 

� 


� 


� .


Since it is easier to maximize the log of the likelihood, the log likelihood function, the 
optimization problem for logistic regression is considered to be the problem of finding 
the maximum value of parameter fitting the log likelihood. 


� .


The maximization is done through matrix calculus which gives the gradient ascent rule:

� 

An important observation is that this rule is similar to the parameter upgrade rule of 
linear regression, however the hypothesis function is entirely different in this case.


hθ(x) = g(θT x) =
1

1 + e−θT x

g(z) =
1

1 + e−z

P(y = 1 |x; θ ) = hθ(x)
P(y = 0 |x; θ ) = 1 − hθ(x)

θ

P(y |x; θ ) = (hθ(x))y(1 − hθ(x))1−y

L(θ ) = p( ⃗y |X; θ )

L(θ ) =
m

∏
i=1

p(y(i) |x(i); θ )

L(θ ) =
m

∏
i=1

(hθ(x(i)))y(i)(1 − hθ(x(i)))1−y(i)

l(θ ) = log L(θ ) =
m

∑
i=1

y(i) log(hθ(x(i)))(1 − y(i))log(1 − hθ(x(i)))

θj = θj + α(y(i) − hθ(x(i)))x(i)
j .
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Generative Learning Algorithms 
The classification algorithms that have been talked about until now model � , 
the conditional distribution of y given x. The classification algorithm for example, 
logistic regression mapped the output based on the input features and then 
accordingly trained a hypothesis function according to which the decision was made 
based on what side of the decision boundary the unseen training example resides. 
However the algorithm can also be trained in another manner by making the algorithm 
first understand the features of a particular kind by exposing the algorithm explicitly 
and then after the algorithm has learned the features, it is tested on the unseen 
examples to predict the class of higher probability. 

Algorithms that try to learn �  directly (such as logistic regression) or algorithms 
that try to learn mapping directly from the space of inputs �  to the labels {0,1} are 
called discriminative learning algorithms. 
The algorithms that instead model �  (and � ) are called generative learning 
algorithms. After modeling �  and � , the algorithm uses the Bayes Rule to 
derive the posterior distribution of y given x:


� , where � .


Gaussian Discriminative Analysis 
This is among the most widely used generative learning algorithms. In this model, it is 
assumed that �  is distributed according to a multivariate normal distribution.


Multivariate Normal Distribution 
The multivariate normal distribution in n-dimensions, is parametrized by a mean vector 
�  and a covariance matrix  �  where �  is symmetric and 
positive semi-definite. The distribution is defined as:


� .


� is the determinant of the matrix � .


The Gaussian Discriminative Analysis Model 
In this classification problem, x are the input features which are continuous-valued 
random variables. The Gaussian Discriminative Model (GDA) models p(x|y) using 
multivariate normal distribution. The model is:


� ;

� ;


� .

The distributions are given by:

� 


p(y |x; θ )

p(y |x)
χ

p(x |y) p(y)
p(y) p(x |y)

p(y |x) =
p(x |y)p(y)

p(x)
p(x) = p(x |y = 1)p(y = 1) + p(x |y = 0)p(y = 0)

p(x |y)

μ ∈ ℜn ∑ ∈ ℜn×n ∑ ≥ 0

𝒩(μ, ∑ ) = p(x; μ, ∑ ) =
1

(2π)n/2 |∑ |1/2 exp(−
1
2

(x − μ)T(∑ )−1(x − μ))

|∑ | ∑

y ∼ Bernoulli(ϕ)
x |y = 0 ∼ 𝒩(μ0, ∑ )
x |y = 1 ∼ 𝒩(μ1, ∑ )

p(y) = ϕy(1 − ϕ)1−y
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� 


� 


The parameters of the model are � . 

The log-likelihood of the data is given by


� 


	 	      � 


By maximizing l with respect to the parameters, the maximum likelihood estimate of 
the parameters is found to be:


	 	 	 	 � 


	 	 	 	 � 


	 	 	 	 � 


	 	 	         � .


where �  when x is true and 0 otherwise. This is the indicator vector notation.

Implementation 

Problem: Separating out salmons from Alaska and Canada. Each salmon is 
represented by two attributes �  and �  depicting growth ring diameters in 1) fresh 
water, 2) marine water.

Data Set: “q4x.dat” stores the two attribute values with one entry on each row. 
“q4y.data” stores the target values (� ) on respective rows.

Assumption: �  

Code 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 

x=np.genfromtxt('q4x.dat',dtype=int) 

p(x |y = 0) =
1

(2π)n/2 |∑ |1/2 exp(−
1
2

(x − μ0)T(∑ )−1(x − μ0))

p(x |y = 1) =
1

(2π)n/2 |∑ |1/2 exp(−
1
2

(x − μ1)T(∑ )−1(x − μ1))

ϕ, ∑ , u0,  and μ1

l(ϕ, μ0, μ1, ∑ ) = log
m

∏
i=1

p(x(i), y(i); ϕ, μ0, μ1, ∑ )

= log
m

∏
i=1

p(x(i) |y(i); μ0, μ1, ∑ )p(y(i); ϕ)

ϕ =
1
m

m

∑
i=1

1{y(i) = 1}

μ0 =
∑m

i=1 1{y(i) = 0}x(i)

∑m
i=1 1{y(i) = 0}

μ1 =
∑m

i=1 1{y(i) = 1}x(i)

∑m
i=1 1{y(i) = 1}

∑ =
1
m

m

∑
i=1

(x(i) − μy(i))(x(i) − μy(i))T

1{x} = 1

x1 x2

y(i) ∈  {Alaska, Canada}
(∑ )0 = (∑ )1 = ∑
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y=np.genfromtxt('q4y.dat',dtype=str) 
y=np.c_[y] 

def model_feature(feature,mean,covariance): 
	 temp = np.exp( np.matmul( np.matmul( (feature-mean).transpose(), 
np.linalg.inv(covariance) ), (feature-mean) ) / (-2) ) 
	 return temp / ( ( (2*np.pi)**(feature.shape[0]/2) ) * np.linalg.det(covariance) ) 
	  

indicator_1=0 
for i in y: 
	 if i=='Canada': 
	 	 indicator_1+=1 
	 	  
indicator_0=y.shape[0]-indicator_1 

#Calculating Phi 
phi=indicator_1/y.shape[0] 

#Calculating Mu0 
Mean_0=0 
for i in range(0,y.shape[0]): 
	 if y[i]=='Alaska': 
	 	 Mean_0+=x[i] 
	 	  
Mean_0=Mean_0/indicator_0 
Mean_0=np.c_[Mean_0] 

#Calculating Mu1 
Mean_1=0 
for i in range(0,y.shape[0]): 
	 if y[i]=='Canada': 
	 	 Mean_1+=x[i] 
	 	  
Mean_1=Mean_1/indicator_1 
Mean_1=np.c_[Mean_1] 

#Calculating Covariance 
covariance=0 
for i in range(0,y.shape[0]): 
	 if y[i]=='Alaska': 
	 	 covariance+=(np.matmul((x[i].transpose()-Mean_0),(x[i].transpose()-
Mean_0).transpose())) 
	 else: 
	 	 covariance+=(np.matmul((x[i].transpose()-Mean_1),(x[i].transpose()-
Mean_1).transpose())) 

�24



	 	  
covariance=covariance/y.shape[0] 

#printing mean and variances 
print("The Mean for the Alaska training set is\n",Mean_0,"\n") 
print("The Mean for the Canada training set is\n",Mean_1,"\n") 
print("The Covariance Matrix for the multivariate gaussian distribution 
is\n",covariance,"\n") 

test=np.array([[0],[0]]) 
test[0][0] = int(input('Enter the features of the fish\n')) 
test[1][0] = int(input()) 

#Calculating the probability of the fish coming from Alaska 
probability_Alaska = model_feature(test,Mean_0,covariance)*(1-phi) 
#calculating the probability of the fish coming from Canada 
probability_Canada = model_feature(test,Mean_1,covariance)*phi 

if probability_Alaska > probability_Canada : 
	 print('Fish is from Alaska\n') 
else: 
	 print('Fish is from Canada\n') 
	  

fig=plt.figure() 
ax=fig.add_subplot(111,projection='3d') 

for i in range(0,y.shape[0]): 
	 if y[i]=='Alaska': 
	 	 ax.scatter(x[i][0],x[i][1],zs=0,c='r',marker='x') 
	 else: 
	 	 ax.scatter(x[i][0],x[i][1],zs=0,c='b',marker='o') 
	 	  
ax.set_xlabel('Fresh Water') 
ax.set_ylabel('Marine Water') 

c = np.matmul( np.matmul( Mean_0.transpose(),np.linalg.inv(covariance) ), Mean_0 ) - 
np.matmul( np.matmul( Mean_1.transpose(),np.linalg.inv(covariance) ), Mean_1 ) - 
2*np.log((1-phi)/phi) 
b = 2 * np.matmul( (Mean_1-Mean_0).transpose(),np.linalg.inv(covariance) ) 

x_1=np.zeros((1,x.shape[0])) 
x_2=np.zeros((1,x.shape[0])) 

for i in range(0,x.shape[0]): 
	 x_1[0][i]=x[i][0] 
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	 x_2[0][i]=x[i][1] 
	  
print(b) 
print(c) 

plt.plot(x_1,((b[0][0]*x_1+c)/(-1*b[0][1])),'r' ) 

ax.view_init(elev=90,azim=90) 
plt.show() 

Result 

�  

�  

�  

Input Feature values: 132 and 42.




μ0 = [ 98.38
429.66]

μ1 = [137.46
366.62]

∑ = [82541.104 1410.732
1410.732 82541.104]
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Support Vector Machines 
Support Vector Machines (SVMs) are among the best supervised learning algorithms. 
They take into exhaustive consideration of vector representation of the training 
examples and divide the linearly separable labels with the help of margin and the 
greater the margin, the more accurate prediction there can be. Though they are defined 
for linearly separable classifiers, they are extended to non-linearly separable classifiers 
with the help of Kernels, which make the SVMs work like a charm for non-linearly 
separable data. 

A single decision rule is defined which decides the class of label based on the decision 
rule. The decision rule is the median line of the gutter, which is defined as the vectors 
lying on the margins of the two types of labels. The width is defined as the width of the 
street. 

The basic intuition of SVMs as stated earlier is that the greater the width of the street, 
the greater the accuracy of prediction. Hence the task is to maximize the width under a 
given set of constraints. This is beautifully accounted by the Lagrange’s multipliers.

Decision Rule: �  for positive examples


Function: �  

Constraint:  �  
where �  for positive and negative examples respectively.

�  is the input data in vector space.

�  is the vector perpendicular to the median line of the margin.

b is a positive constant.


Using Lagrange’s Multipliers,


� ,


Differentiating to find the extremums, it can be proved that the decision rule depends 
only on the dot product of the unknown �  and the sample vectors � . 
Hence the decision rule becomes,


�  then it will belong to positive class else the unknown will belong 

to the negative class.


SVM Optimization Problem: 

�  

where, �  is the tradeoff between increasing the margin-size and ensuring that �  lies on 
the correct side of the margin.


⃗w . ⃗u + b ≥ 0
1
2

| | ⃗w | |2

yi( ⃗xi . ⃗w + b) − 1
yi = + 1 and − 1

⃗xi ⃗w

L =
1
2

| | ⃗w | |2 −
m

∑
i=1

αi[yi( ⃗xi . ⃗w + b) − 1]

⃗u ⃗xi

m

∑
i=1

αiyi ⃗xi ⃗u + b ≥ 0

[
1
m

m

∑
i=1

ma x(0,1 − yi( ⃗w . ⃗x + b))] + λ | | ⃗w | |2

λ ⃗x
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Implementation 

Problem: Build a handwritten digit classifier using the mini-batch Pegasos algorithm 
and the customized solver LIBSVM.

Data Set: A subset of the MNIST dataset with 2500 training examples and 2500 testing 
examples. Each row in the data file corresponds to an image of size 28 x 28, 
represented as a vector of grayscale pixel intensities followed by the label associated 
with the image. Every column represents a feature where the feature value denotes the 
grayscale value (0-255) of the corresponding pixel in the image. There is a feature for 
every pixel in the image. Last column gives the corresponding label.

Algorithm: The “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM” has been 
used to solve for w and b. The mini-batch size is taken to be 100. The algorithm is 
given by:


Code 
import numpy as np 
X=np.genfromtxt('mnist/train.csv',delimiter=',',dtype=int) 
X=np.c_[np.ones((X.shape[0]),dtype=int),X] 
y=np.c_[X[:,X.shape[1]-1]] 
X=X[:,:-1] 
lambda_1=0.00001 
Y=np.zeros((X.shape[0],10),dtype=int)-1 
k=100 
T=1000 
for i in range(0,y.shape[0]): 
	 Y[i][y[i]-1]=1 

	  

�28



def main(): 
	 W=np.zeros((X.shape[1],1)) 
	 for label in range(0,10): 
	 	 w=np.c_[np.zeros((X.shape[1]),int)] 
	 	 for t in range(1,T+1): 
	 	 	 A=np.random.uniform(0,X.shape[0]-1,k) 
	 	 	 for i in range(0,A.size): 
	 	 	 	 A[i]=int(A[i]) 
	 	 	 A_plus=np.array([]) 
	 	 	 for i in A: 
	 	 	 	 if( ( np.matmul(w.transpose(),np.c_[X[int(i),:]])*Y[int(i)][label] )
[0][0]<1 ): 
	 	 	 	 	 A_plus=np.append(A_plus,int(i)) 
	 	 	 	 #print(int(i)) 
	 	 	 eta=1/(lambda_1*t) 
	 	 	 sum_total=0 
	 	 	 for i in A_plus: 
	 	 	 	 sum_total+=(Y[int(i)][label]*X[int(i),:]) 
	 	 	 w=(1-eta*lambda_1)*np.c_[w]+(eta/k)*np.c_[sum_total] 
	 	 W=np.append(W,w,axis=1) 
	 W=W[:,1:] 
	 return W 
	 	  
def testing(W): 
	 X=np.genfromtxt('mnist/test.csv',delimiter=',',dtype=int) 
	 X=np.c_[np.ones((X.shape[0]),dtype=int),X] 
	 y=np.c_[X[:,X.shape[1]-1]] 
	 X=X[:,:-1] 
	 Y=np.zeros((X.shape[0],10),dtype=int)-1 
	 for i in range(0,y.shape[0]): 
	 	 Y[i][y[i]-1]=1 
	 result=np.matmul(X,W) 
	 print(result[0:100,:]) 
	 correct=0 
	 for i in range(0,result.shape[0]): 
	 	 max_1=-1000 
	 	 for j in range(0,result.shape[1]): 
	 	 	 if result[i][j]>0: 
	 	 	 	 max_1=(j+1)%10 
	 	 if y[i]==max_1: 
	 	 	 correct+=1 
	 	 print(max_1) 
	 print((correct/X.shape[0])*100,"%") 
	  
W=main() 
testing(W) 
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Result 
The prediction accuracy from the algorithm is 77.37%.


LIBSVM Implementation 
� 

C=1.0 
Kernel: Gaussian Kernel, (� ).


Code 
import numpy as np 
from svmutil import * 

X=np.genfromtxt('../../mnist/train.csv',delimiter=',',dtype=int) 
y=np.c_[X[:,X.shape[1]-1]] 
X=X[:,:-1] 
X=X/255 
X=X.astype(str) 
y=y.astype(str) 

for i in range(0,X.shape[0]): 
	 for j in range(0,X.shape[1]): 
	 	 X[i][j]=str(j)+":"+X[i][j] 
	 	  
np.savetxt('data.txt',np.c_[y,X],fmt='%s') 

a,b=svm_read_problem('data.txt') 
prob=svm_problem(a,b) 
param=svm_parameter('-s 0 -t 0 -c 1') 
m=svm_train(prob,param) 

X_test=np.genfromtxt('../../mnist/test.csv',delimiter=',',dtype=int) 
y_test=np.c_[X_test[:,X_test.shape[1]-1]] 
X_test=X_test[:,:-1] 
X_test=X_test/255 
X_test=X_test.astype(str) 
y_test=y_test.astype(str) 

for i in range(0,X_test.shape[0]): 
	 for j in range(0,X_test.shape[1]): 
	 	 X_test[i][j]=str(j)+":"+X_test[i][j] 

γ = 0.05

K(x, z) = exp−γ*||x−z||2
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np.savetxt('data_test.txt',np.c_[y_test,X_test],fmt='%s') 
a_test,b_test=svm_read_problem('data_test.txt') 
p_labels, p_acc, p_vals = svm_predict(a_test,b_test,m) 
print(p_acc) 
param=svm_parameter('-s 0 -t 2 -g 0.05 -c 1') 
m=svm_train(prob,param) 
p_labels, p_acc, p_vals = svm_predict(a_test,b_test,m) 
print(p_acc) 

Result 
The prediction accuracy from the algorithm is 97.23%.


Interaction of Game Theory and Machine Learning 

The proposed project has explored the foundational concepts of the fields of game 
theory and machine learning. Though the two fields are well researched areas in 
themselves, the research area lying at the interface of both the fields is developing at 
rapid rate. The advancement of computing power has made the development of  
applications in the fields of deep learning and reinforcement learning highly optimal. 
This has influenced the application of these algorithms in the areas where self 
interested rational agents interact among themselves which heralds the application of 
game theoretic solution strategies in this area. 


As discussed in the theoretical description of repeated games and stochastic games, 
the stochastic games are a natural extension of Markov Decision Process (MDPs) to 
include multiple agents. The MDPs are an integral part of reinforcement learning in 
which the agent learns from about success and failure through reward and punishment. 


Similarly, a number of other fields in artificial intelligence and even in areas of 
economics are taking the advantage of the usage of the both machine learning and 
game theory as tools to improve upon the existing state of the art techniques. The 
various applications of machine learning in algorithmic game theory concepts have 
been proposed as follows:
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Machine Learning in Selfish Routing 
The inefficiency of equilibria is quantified using the concept of price of anarchy which 
distinguishes between the selfish outcome of the agents in comparison to the optimal 
outcome of the game. This is exemplified through the Pigou’s example, explained by 
the economist Pigou in 1920. 


The Pigou’s example illustrates a very simple network problem which illustrates the 
source node, s and the terminal node, t with two routes between them with costs 1 and 
x, respectively where x depends on the number of users using the specific edge. The 
upper edge on the other hand represents a constant cost edge. The costs are labelled 
with the cost function c(x). In an equilibrium approach, all the users prefer the lower 
route which gets congested as the number of users increase through that route and 
hence gives a total cost of 1 when all the users use the lower edge. The upper edge on 
the other hand could have provided a more optimal solution with half users using the 
upper edge and the other half using the lower edge. The total cost in such case would 
have been 3/4. The price of anarchy calculated in this case would therefore be 1/(3/4) = 
4/3. This suboptimal performance of the network can be enhanced in the case of 
repeated games when the agents learn about the previous inefficiencies. The machine 
learning prediction models can therefore be used to improve the routing efficiency in 
the network with directing the node to route half the traffic through the upper edge and 
the other half through the lower edge. 


Games improving the Web 
Construction of Empire State Building: 7 million human-hours. The Panama canal: 20 

million human-hours. Estimated number of human hours spent playing solitaire around 
the world in one year: 9 billion. �  

The number of users on the internet playing games is extremely large. Therefore there 
has been a lot of work in mechanism design to develop games which would in fact 
improve the quality of web services. Some of the most popular game which have been 
responsible for improving the functionality of the Web are:


[11]
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• ESP game (Google Image labeler): This game was developed to to resolve the 
problem of data classification, which is a difficult task for the computers even with 
sophisticated learning algorithm and efficient hardware. This game used the 
computational ability of humans to classify the images and then train the computer 
for the same. 


• CAPTCHA: CAPTCHA is an acronym for Completely Automated Public Turing test to 
Computers and Humans Apart. This test is used on various authentication platforms 
and is mostly used for network security to disallow hackers from running scripts to 
distort sensitive data. Various models in artificial intelligence are tested on the 
CAPTCHA and are predicted to be able to solve hard AI problems if they are 
successful in solving CAPTCHA. There have been increasing use of machine learning 
and Optical Character Recognition, machine learning attacks on CAPTCHAs to 
invade the network security.


Electronic Market Design 
The number of online markets has grown throughout the world with companies like 
Google, Amazon and eBay bringing customers and markets online. This has resulted in 
a large number of mechanism being designed for the revenue generation for the 
companies and at the same time convenient models of expenditure for the customer. 
The pay-per click policy by google was a major revenue model change for the online 
mechanisms. Similarly research for online algorithms based on the changing users are 
being designed and machine learning is being incorporated to understand particular 
users and learn their choices which are then used for their future choices. This has 
therefore brought about exciting algorithmic challenges which are solved by using the 
concepts of machine leaning, economics theory and game theory.


Conclusion 

The major results highlighted by this paper include the various solution models in game 
theory and the efficient approach of the usage of different models in different 
scenarios. The second part illustrates the comparison and implementation of the basic 
as well the sophisticated machine learning regression and classification algorithms 
which can be used and further improved upon. The last part of the paper is based on 
the interface of these two exciting fields and how they are coming together to solve 
exciting challenges and to improve the existing problems by making the solutions more 
efficient and optimum. The future scope of work lies in implementing the algorithms for 
implementing these ideas in developing fields of 5G Wireless Networks and electronic 
market design for online shopping and working on new routing protocols using these 
analysis methods form the algorithmic game theory.
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