
Interaction of Game Theory and
Machine Learning in a Connected

World.

The number of people interacting through internet has been increasing exponentially
over the past 10 years and is expected to increase in a similar proportion in the coming
years. This has made the world strongly connected with people networking through the
internet. This has therefore also seen a rise in the way markets function in the
traditional sense with markets, commerce and auction mechanisms coming online,
which has further lead to the development of various fields of research which lie at the
interface of computer science, game theory and economics theory. An exciting area of
research, Algorithmic Game Theory has emerged and is being widely studied for
optimizing the solution concepts in game theory and further analyzing the scope of
computer science in economics and vice versa along with the applications of game
theory in Artificial Intelligence, networking and operations research.

On a parallel front, the advancement of the field of machine learning has made it now
possible for us learn from the data and make powerful predictions and analysis based
on the inferences drawn from the data. Applications of machine learning in algorithmic
game theory have been less studied and with the growing capabilities of machine
learning in large decentralized systems it is drawing widespread attention and exciting
contributions from computer scientists.

The purpose of this project is three fold:

1. Description and analysis of basic as well as advanced solution concepts of game

theory.

2. Theoretical explanation and practical implementation of machine learning

algorithms on open source datasets.

3. Interaction of the two fields and their application in state of the art research.

Game Theory

Game theory is defined as the mathematical study of interaction of self interested
rational agents. This branch of study models every practical situation in the form of a
game with several players described as agents playing the game. The inherent
assumption is that the players interact in a manner by playing every move which is in
their self interest. The agents have their own description of the world and act based on
that description.

The dominant approach to modeling an agent’s interest is utility theory. This theory
quantifies the preferred action by the agent in situations involving a set of alternatives
with the agent choosing the alternative with the most favorable outcome state or the
state in which it has the maximum utility. This mapping from an existing state to the

�1

final state with the agent’s decision taken as an input is done through the utility
function. When the agent is uncertain about which state of world he faces, his utility is
defined as the expected value of his utility function with respect to the appropriate
probability distribution over states.

Defining Games

Every game is defined by three parameters namely:

• Players: The agents playing the game responsible for making the decisions.

• Actions: The set of possible moves the player can play.

• Payoffs: The quantified value which will be offered to the player after taking the

decided action.

These three parameters can also be thought of answering the basic questions of Who,
What and Why with the Player information describing the Who, Action information
describing the What and the Payoffs describing Why the Player is motivated to take
that specific action.

Standard Representation of Games

Games are described in two forms, Normal Form (also know as Matrix form and
Strategic Form) and Extensive Form.

Normal Form game definition lists what players get as a function of their action whilst
incorporating the assumptions that the players move simultaneously and their
strategies encode various things.

The Extensive form games on the other hand incorporate a temporal structure of the
game and are more closer to the practical implementation of the games. The players in
this definition move sequentially and are represented as a tree. Every player in this form
of representation keeps track of what each player knows while making her decision.

Definition 1 (Normal-form game)� . A (finite, n-person) normal-form game is a tuple
(N,A,u), where:

• � is a finite set of n player, indexed by i;

• � = � x … x � where � is a finite set of actions available to player i. Each vector
� is called an action profile;

• � where � is a real-valued utility (or payoff) function for
player i.

A natural way to represent games is via an n-dimensional matrix. The normal form
representation represents each 2-player game in the form of a matrix with the row
player describing player 1 and the column player describing player 2. The rows
correspond to the action profile of player 1 and the columns correspond to the action
profile of player 2. The cells list the utility or payoff values for each player. The
illustration of the normal form games will be specified through the fundamental
example of Prisoner’s Dilemma.

[1]

N = {1,...,n}
A Ai An Ai
a = (ai, . . . , an) ∈ A
u = (u1, . . . , un) ui : A → R

�2

Prisoner’s Dilemma
This is perhaps the most well-known and well-studied game.

Example 1 (Prisoner’s Dilemma) � Two prisoner’s are on a trial for a crime and each
one faces a choice of confessing to the crime or remaining silent. If they both remain
silent, the authorities will not be able to prove charges against them and they will both
serve a short prison term, say 2 years, for minor offenses. If only one of them
confesses, his term will be reduced to 1 year and he will be used as a witness against
the other, who in turn will get a sentence of 5 years. Finally if they both confess, they
will both get a small break for cooperating with the authorities and will have to serve
prison sentences of 4 years each.

Hence there are four total outcomes depending on the choices made by each of the
two prisoner’s. The costs incurred in the four outcomes can be succinctly summarized
in the following 2 x 2 matrix.

In it’s most general form, the Prisoner’s Dilemma is any normal-form game with payoffs
a, b, c and d corresponding 4, 1 , 5 and 2 respectively in a manner such that c > a > d
> b. This famous game is often thought paradoxical because it has counter intuitive
paradoxical properties in terms of the actions taken by the players and the solution set
of the game which will be described in the next section.

Strategies in Normal-Form Games.

Every player has a set of actions available and he could choose a single action and
play it. This is called a pure strategy. However he could also randomize over his set of
available strategies and choose a certain strategy according to a probability
distribution. This is known as mixed strategy.

The mixed strategy for a normal form game is defined as follows:

Definition 2 (Mixed Strategy). Let (N, A, u) be a normal-form game and for any set X
let � be a set of probability distributions over X. Then the set of mixed strategies

for player i is �

[2]

Confess (Cooperate) Silent (Defect)

Confess (Cooperate) (4,4) (1,5)

Silent (Defect) (5,1) (2,2)

Player2

�

Player1

∏ (X)
Si = ∏ (Ai) .

�3

Definition 3 (Mixed-strategy profile). The set of mixed strategy profiles is the
cartesian product of individual mixed-strategy sets, � .

Why play a mixed strategy:

• To randomize and confuse the opponent.

• Randomize when an agent is uncertain about other’s actions.

• Mixed strategies are a concise description of repeated plays.

• Mixed strategies define population dynamics.

Definition 4 (Support). The support of a mixed strategy � for a player i is the set of
pure strategies � .

Definition 5 (Expected utility of a mixed strategy). Given a normal-form game (N, A,
u), the expected utility � for a player i of the mixed-strategy profile
�

�

This is intuitively determined as the probability of reaching each outcome and then we
calculate the average of the payoffs of each outcome.

Solution Concepts in Game Theory.

The environment with the interaction of several agents becomes very complex to
analyze without a specific analysis technique. Therefore the tow most popular solution
concepts namely Nash Equilibrium and Pareto Optimality help game theorists analyze
the game and the outcome of the game based on the specific moves by the involved
players.

Best Response and Nash Equilibrium.

Nash Equilibrium is one of the most standard solution concept in game theory. It
requires the complete information of the game along with the action set profile of all the
participating agents. The complete information of the game with the single player
allows the player to choose the action with the maximum utility given the actions of the
other agents. This allows the self interested agent to respond in a manner which is in
his best interest. Therefore if every agent were to act in a manner such that her action
were the best response to the actions of all other participating agents, we would arrive
that solution which would be optimal for every participating agent.

The mathematical description defines � a strategy profile
without agent i’s strategy. Hence the complete strategy profile is described as

S1 × … × Sn

si
{ai |si(ai) > 0}

ui
s = (s1, …, sn) is defined as

ui(s) = ∑
a∈A

ui(a)
n

∏
j=1

sj(aj) .

s−i = (s1, …, si−1, si+1, …, sn),

�4

� . The decision problem with player i would be to decide his action from
the strategy profile in order to maximize her utility given � .

Definition 6 (Best Response). Player i’s best response to strategy profile � is a
mixed strategy � such that � for all strategies � .

It can also be thought as the action awe would take to maximize our utility in the light
of the actions of others. The best response for an agent is not necessarily unique.
However, any particular will not know what other strategies the other player will adopt
and it is therefore not a solution concept since it does not help us identify an
interesting set of outcomes in a general case. The solution concept however based on
this strategy is the Nash Equilibrium.

Definition 7 (Nash Equilibrium). A strategy profile � is a Nash
Equilibrium if, for all agents, i, � is the best response to � .

Nash equilibrium is a self-consistent or stable set of profile because no agent has any
incentive to deviate from her current strategy. If this were not true, the agents would
not be in equilibrium since at least one player would have the incentive to deviate from
her current strategy.

Domination
Let � be two strategies for player i and let � be the set all possible strategy
profiles for the other players.

Definition 8 (Strict Dominance). � strictly dominates � if

� .

Definition 9 (Weak Dominance). � weakly dominates � if

� .

Equilibria and Dominance
• If one strategy dominates every other strategy, it is said to be dominant.

• A strategy profile consisting of dominant strategy for every player is a Nash

equilibrium.

• An equilibrium with strictly dominant strategies is unique.

• In Prisoner’s Dilemma the dominant strategy is to defect.

• Intuitively, weak Nash equilibria are less stable than strict Nash equilibria because at

least one player has a best response to other player’s strategies that is not his
equilibrium strategy.

• Mixed-strategy Nash equilibria are necessarily weak, while pure-strategy Nash
equilibria may strict or weak, depending on the game.

Theorem 1 (John F. Nash, 1951)� . Every game with a finite number of players and
finite number of action profiles has at least one Nash equilibrium.

s = (si−1, si)
s−i

s−i
si * ∈ Si ui(si * ,s−i) ≥ ui(si, s−i) si ∈ Si

s = (s1, …, sn)
si s−i

si and s′�i S−i

si s′�i
∀s−i ∈ S−i, ui(si, s−i) > ui(s′ �i, s−i)

si s′�i
∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′ �i, s−i)

[7]

�5

This theorem is motivating for the existence of either a pure strategy Nash equilibrium
or a mixed strategy Nash equilibrium for every game. The theorem is proved using the
Kakutani fixed-point theorem and is alternatively proved using the Brouwer fixed-point
theorem� .

Complexity of Computing a Nash Equilibrium.

Nash’s theorem, proved in 1951, that every game has a Nash equilibrium. This is a
reassuring fact which states that every game, in principle, can reach a quiescent state
in which no player has an incentive to deviate from her behavior. However there has
been a lot research in the field of finding the efficient algorithm to find the equilibrium
which is guaranteed to exist.

The two algorithms for finding the Nash equilibrium are Linear Complementarity
formulation or the Lemke-Howson algorithm � and Support Enumeration method � .
However these algorithms are exponential in the worst case and finding a single Nash
equilibrium seems hard. The problem of computing the Nash equilibrium is a
fundamental problem of algorithmic game theory and it has been proved to be PPAD
complete. In 1991, the complexity class PPAD, for which the Brouwer’s problem is
complete, was introduced � .

The Class PPAD
In any directed graph with one unbalanced node (node with out degree different from
its in degree), there must be another unbalanced node. The corresponding class is
called PPAD for “polynomial parity arguments for directed graphs”, and it contains
Nash and Brouwer. Brouwer was proved to be PPAD-Complete in � . Unfortunately,
Nash - the problem which had motivated this line of research was not shown PPAD-
Complete, though it was conjectured to be.

[3]

[5] [6]

[8]

[8]

�6

NP-Complete

NP

PPAD

P

It is established that computing an approximate Nash equilibrium in an r-player game is
in PPAD. The r = 2 case was shown in � .

Theorem 2 � . r-Nash is in PPAD, for r � 2.

Alternate Solution Concepts in Normal-Form Games.

Beyond Nash Equilibrium
Nash equilibrium is just a way to analyze a game and to reason which strategy a player
would choose given the strategy of other players.

Strictly Dominated Strategies and Iterated Removal.
• A strictly dominated strategy is never the best reply.

• It is removed since it will not be played.

• All players know this and hence it is iterated.

• Running the process to termination is called iterated removal of strictly dominated

strategies.

A strategy � is strictly dominated by � if �

The iterated removal of strictly dominant strategies gives us a lot of power by
eliminating many of the payoffs and hence making our normal form game
representation more succinct.

• Process preserves Nash equilibrium.

• It can be used a preprocessing step before computing an equilibrium.

• Some games are solvable using this technique. These games are dominance

solvable.

• The order of removal does not matter with strictly dominated strategies.

Weakly Dominated Strategies
A strategy � is weakly dominated by � if �
and � for some � .

� does always at least as well and sometimes strictly better than � .

• They may or may not be the best replies.

• Order of removal can matter.

• At least one equilibrium is preserved.

• Nash equilibria is a subset of what preserves.

MAXMIN and MINMAX Strategies.

MAXMIN Strategy.
Player i’s maxmin strategy is a strategy that maximizes i’s worst-case payoff, in the
situation where all other players (-i) happen to play the strategies which cause the

[8]

[4] ≥

ai ∈ Ai a′�i ∈ Ai ui(ai, a−i) < ui(a′�i, a−i)∀a−i ∈ Ai

ai ∈ Ai a′�i ∈ Ai ui(ai, a−i) ≤ ui(a′�i, a−i)∀a−i ∈ Ai
ui(ai, a−i) < ui(a′�i, a−i) a−i ∈ Ai

a′�i ai

�7

greatest harm to i. The maxmin value (or safety level) of the game for player i is that
minimum payoff guaranteed by a maxmin strategy.

Definition 10 (Maxmin). The maxmin strategy for player i is:

�

and the maxmin value for player i is:

�

MINMAX Strategy

Definition 11 (Minmax). Player i’s minmax strategy against player -i in a 2-player game
is a strategy that minimizes -i’s best-case payoff and the minmax value for player i
against player -i is payoff �

Theorem 3 (Minimax theorem (John von Neumann, 1928)) � . In any finite, two-
player, zero-sum game, in any Nash equilibrium, each player receives a payoff that is
equal to both his maxmin value and his minmax value.

This theorem concludes the following for two-player zero-sum games:

1. Each player’s maxmin value is equal to his minmax value. By convention, the

maxmin value of player 1 is called the value of the game.

2. For both players, the set of maxmin strategies coincides with set of minmax

strategies.

3. Any maxmin strategy profile is a Nash equilibrium. Hence all Nash equilibria have

the same payoff vector.

Perfect Information Extensive Form Games

Normal form game does not incorporate any notion of sequence or time in the actions
of players. The extensive form is an alternate representation of a game that makes the
temporal structure explicit. The variants of of extensive form games are:

• Perfect Information extensive form.

• Imperfect information extensive form.

Definition 12 (Perfect-information game). A (finite) perfect-information game (in
extensive form) is defined by the tuple (N, A, H, Z, �) where:
• N is a set of n players;

• A is a (single) set of actions;

• H is a set of non-terminal choice nodes;

• Z is a set of terminal choice nodes;

• � is the action function, which assigns to each choice node a set of

possible actions;

• � is the player function, which assigns to each nonterminal node a player
� who chooses an action at that node;

arg maxsi mins−iui(si, s−i),

 maxsi mins−iui(si, s−i),

arg minsi maxs−iu−i(si, s−i),

[9]

χ, ρ, σ, μ

χ : H → 2A

ρ : H → N
i ∈ N

�8

• � is the successor function, which maps a choice node and an
action to a new choice node or terminal node such that for all � and
� , if � then � ;

• � where � is a real-valued utility function for a player i on
the terminal nodes Z.

Strategies and Equilibria
A pure strategy for a player in a perfect information game is a complete specification of
which action to take at each node belonging to that player.

Definition 13 (Pure Strategies). Let G = (N, A, H Z, �) be a perfect-
information extensive-form game. Then the pure strategies for player i consist of the
cartesian product �

Nash Equilibrium
Given the new definition of pure strategy, the previous definitions of mixed strategies,
best responses and Nash equilibrium can be reused.

Induced Normal-Form
Every extensive form game can be converted into normal form however the converse is
not true.

(FIGURE): Representation of a perfect information extensive form game.

σ : H × A → H ∪ Z
h1, h2 ∈ H

a1, a2 ∈ A σ (h1, a1) = σ (h2, a2) h1 = h2 and a1 = a2
u = (u1, …, un), ui : Z → ℜ

χ, ρ, σ, μ

∏
h∈H,ρ(h)=i

χ (h) .

�9

A B

C D E F

G H

1

2 2

1

(3,8) (8,3) (5,5)

(2,10) (1,0)

Theorem 4. Every (finite) perfect-information game in extensive form has a pure-
strategy Nash equilibrium.

This result is due to Zermelo, 1913 with the intuition that since players take turns and
everyone gets to see everything that happened thus far before making a move, it is
never necessary to introduce randomness into action selection in order to find an
equilibrium.

Subgame-Perfect Equilibrium

In order to make the Nash equilibrium more intuitively correct in the extensive form
games, the concept of subgame perfection has been introduced.

Definition 14 (Subgame). Given a perfect-information extensive-form game G, the
subgame of G rooted at node h is the restriction of G to the descendants of h. The set
of subgames of G consists of all the subgames of G rooted at some node in G.

Definition 15 (Subgame-perfect equilibrium). The subgame-perfect equilibrium (SPE)
of a game G are all strategy profiles s such that for any subgame G’ of G, the
restriction of s to G’ is a Nash equilibrium of G’.

The SPE is refinement of the Nash equilibrium for the perfect-information extensive for
games and helps us not to reach implausible Nash equilibria. The algorithm of finding a
subgame-perfect Nash equilibrium is known as BackwardInduction and is a recursive
procedure which ensures each subtree of the perfect-information extensive for to be in
Nash equilibrium.

Pareto Optimality

Definition 16 (Pareto Domination). Strategy profile s Pareto dominates strategy profile
s’ if for all � there exists some � for which �

Definition 17 (Pareto optimality). Strategy profile s is Pareto optimal, or strictly Pareto
efficient, if there does not exist another strategy profile � that Pareto dominates s.

The concept of Pareto optimally is seen as the social good. It is the most optimal
outcome of a game as seen from an outside observer’s perspective who wants the
socially optimal result which is in everyone’s interest. Therefore the socially good
outcome may or may not be same to the Nash equilibria.

Repeated Games, Stochastic Games and Bayesian Games

Repeated Games

i ∈ N, ui(s) ≥ ui(s′ �), j ∈ N uj(s) > uj(s′�) .

s′� ∈ S

�10

In real-world many interactions among the agents takes place over a repeated number
of times and the game being repeated is called the stage game. The games in theory
may be repeated over a finite number of time or infinite number of times. These games
respectively known as finitely repeated games and infinitely repeated games. The
payoffs for players in repeated games are defined in terms of average rewards over the
number of games played and the payoffs received.

Definition 18 (Average reward). Given an infinite sequence of payoffs � for
player i, the average reward of i is

�

Discounted Rewards
The problem in defining the utility of a player in the manner of average rewards is that
even if the initial payoffs for the person are highly negative and they are compensated
after a lot of moves, then also the utility comes out to be 1. However it is often thought
that the initial payoffs are more important than the later payoffs.

Definition 19 (Discounted reward). Given an infinite sequence of payoffs �
for player i, and a discount factor � with � , the future discounted reward of i

is �

Learning in Repeated Games

As the stage game is related, the agents learn from their previous experiences and
therefore play in a manner which they believe shall be most suitable for the situation.
The difference between other learning techniques is that the major objective of other
learning techniques is to learn the environment and find an optimal strategy to act in
the environment by the single agent. Whereas in this learning technique, the agent is
simultaneously teaching other agents as well. The learning is therefore collaborated
with teaching. A bad learner can be a very good teacher too.

The two types of learning in repeated games:

1. Fictitious Play
Each player maintains explicit beliefs about other player by counting the opponents
actions and asses the opponents strategy using these counts.

2. No-regret learning.
The agent does not start with a learning method but with a criteria. The regret an
experiences at time t for not not having played strategy s is � .

Definition 20 (No-regret learning). A learning rule exhibits no-regret learning if for any
pure strategy of the agent s, it holds that � .

r(1)
i , r(2)

i , …

lim
k→∞

∑k
j=1 r(j)

i

k
.

r(1)
i , r(2)

i , …
β 0 ≤ β ≤ 1

∞

∑
j=1

β jr(j)
i .

Rt(s) = αt − αt(s)

Pr(| lim
games→∞

Rt(s) | ≤ 0) = 1

�11

Equilibria of infinitely repeated games

The famous strategies for infinitely repeated games involve a choice at every decision
node, taking into account the history of actions and taking infinite actions. The two
famous strategies are:

1. Tit-for-Tat
In this strategy the agent keeps into account the previous action by the opponent and
is good to the opponent if the previous move played by the opponent was taken by
taking into consideration her move and the agent is bad otherwise. The first move is
taken randomly.

2. Trigger
The agent moves in socially optimal manner till the opponent moves in that manner.
However if the opponent deviates from her strategy and becomes selfish, the agent
shall play her self interested strategy till the end.

Nash Equilibria
For repeated games, the Nash equilibria is defined by the Folk’s theorem.

Theorem 5 (Folk’s Theorem). It states that for ant strategy to be in Nash equilibrium,
the payoff received for that strategy should be feasible and enforceable.

Definition 21 (Feasible). A payoff profile � is feasible if there exists
rational non-negative � such that for all i, we can express � with

� .

Definition 22 (Enforceable). A payoff profile � is enforceable if
� .

Stochastic Games
A stochastic game is a generalization of repeated games where the same stage game
is not repeated instead the agents play games from a set of normal-form games.
Moreover, the game played at any iteration depends on the previous game played and
on the actions taken by all agents in that game. Hence the transition from one game to
the next is probabilistically defined. The stochastic games also generalize the concepts
of Markov Decision Process (MDPs) where the MDP may be defined as a single agent
stochastic game.

Bayesian Games
Bayesian games define the uncertainty about the utility function. They are games of
incomplete information and represent the players’ uncertainty about the game being
played.

r = (r1, r2, …, rn)
αa ri as ∑

a∈A

αaui(a)

∑
a∈A

αa = 1

r = (r1, r2, …, rn)
∀i ∈ N, ri ≥ vi

�12

 Definition 22 (Bayesian game). A Bayesian game is a tuple (N, G, P, I) where:

• N is a set of agents;

• G is a set of games with N agents each such that if g, � then for each agent
� the strategy space in g is identical to the strategy space in g’.

• � is a common prior over games, where � is the set of all
probabilities over G.

• � is a set of partitions of G, one for each agent.

Bayesian Games are of immense importance in the field of artificial intelligence with
each agent computing the opponent in the form of a bayesian agent and agent
calculates its expected utility over the actions of other players and over the types of
other players.

Machine Learning

Machine learning is the branch of computer science that uses statistical techniques to
give computer systems the ability to “learn” with data, without being explicitly
programmed. The agents can improve their behavior through diligent study of their own
experiences. The machine trains itself using the training data, makes a hypothesis
function and then tests on the test data to make the prediction accuracy. The field of
machine learning is closely related to the field pf pattern recognition which is
concerned with the automatic discovery of regularities in data through the use of
computer algorithms and with the use of these regularities to take actions such as
classifying the data into different categories. The field of machine learning is broadly
divided into two main categories, Supervised and Unsupervised learning of which
algorithms of supervised learning shall be discussed in the report.

Supervised Learning
Applications in which the training data comprises examples of the input vectors along
with their corresponding target vectors are known as supervised learning problems.

Notation
1. � is used to denote the input vector or the input features.

2. � is used to denote the output vector or the target variables which are being

predicted.

3. (� , �) is called a training example and for the discussion, there would be m

number of training examples {(� , �); i = 1,…,m} is the training set.

4. � denotes the space of input values and � denotes the space of output values.

Hypothesis
In formal description, the goal of supervised learning is to learn a function �
so that h(x) is a good predictor of the corresponding value of y. This function h is called
a hypothesis.

g′� ∈ G
i ∈ N
P ∈ ∏ (G) ∏ (G)

I = (I1, I2, …, IN)

x(i)

y(i)

x(i) y(i)

x(i) y(i)

χ γ

h : χ ↦ γ

�13

When the output values range is continuous, it is known as a regression problem,
whereas when the target vector can take up only a small number of values, it known as
a classification problem.

Linear Regression

The motivation of this learning technique is to predict accurately the values of the
output vectors which vary linearly with respect to the input vectors. The hypothesis
function is therefore a linear mapping from the input space, � to the output space � and
is defined as:

�

where � ’s are the parameters (also called weights) parametrizing the hypothesis
function. The task at hand is to learn these parameters to output a good prediction. To
simplify the notation, � has been introduced as the intercept term. Both � and x
are n dimensional vectors.

Cost Function�
The aim of machine learning is to predict outputs as close to the actual outputs as
possible and they are therefore trained using a maximum likelihood estimate and the
objective is to minimize the cost function which evaluates how close the values of
� ’s are to � ’s. The cost function is defined as follows:

�

This algorithm is a part of the family of algorithms known as the generalized linear
models.

Batch Gradient Descent
In order to arrive at the value of � which minimizes the cost function, � , the value of
� is repeatedly changed till � keeps decreasing and the update is stopped when
any further change leads to an increase in the value of � . The update of � is done
according to the gradient descent algorithm, which starts with an initial � and
repeatedly performs the update:

�

(This update is simultaneously performed for all j = (0,1,…,n).). � is the learning rate.
This is a very natural algorithm which takes a step in the direction of the steepest
decrease in the value of J.

It can be derived that for one training example, � .

χ γ

h(x) =
n

∑
i=0

θixi = θT x,

θi

x0 = 1 θ

[10]

h(x(i)) y(i)

J(θ) =
1
2

m

∑
i=1

(hθx(i)) − y(i))2 .

θ J(θ)
θ J(θ)

J(θ) θ
θ

θj := θj − α
∂

∂θj
J(θ)

α

∂
∂θj

J(θ) = (hθ(x) − y)xj

�14

For a single training example it gives the update rule:

�

This rule is called the LMS (“least mean squares”).

For a training set with more than one example, the following algorithm is used:

Repeat until convergence

{

	 � 	 (for every j).

}

While gradient descent may be susceptible to local minima in general, the optimization
problem posed here has only one global and no other local optima; thus gradient
descent always converges to a global minimum.

Implementation

Problem: Predict the density of wine based on the wine’s acidity.

Data Set: linearX.csv and linearY.csv are the files containing the training data with
linearX containing the amount of acidity of the wine, (� ’s, �) and linearY
containing its density (� ’s, �).
Learning Rate: 0.0001

Stopping Criteria: � such that � .

Code
import csv
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
	
x=genfromtxt('linearX.csv',delimiter=',')
y=genfromtxt('linearY.csv',delimiter=',')
X=np.c_[np.ones((100,1)),x]
Y=np.c_[y]
epsilon=0.000000001
learning_rate=0.0001
theta=np.zeros((2,1))
theta0=0
theta1=0
theta_x=np.array([0])
theta_y=np.array([0])
Z=np.array([])

θj = θj + α(y(i) − hθ(x(i)))x(i)
j .

θj = θj + α
m

∑
i=1

(y(i) − hθ(x(i)))x(i)
j

x(i) x(i) ∈ ℜ
y(i) y(i) ∈ ℜ

J(θ′�) − J(θ) < ϵ ϵ = 0.000000001

�15

def cost(theta0,theta1,X,Y):
	 theta=np.array(([theta0],[theta1]))
	 hypothesis=np.matmul(X,theta)
	 result=Y-hypothesis
	 result=np.square(result)
	 final_cost=np.sum(result)
	 return 0.5*final_cost
	
hypothesis=np.matmul(X,theta)
temp=Y-hypothesis
temp1=np.matmul(np.transpose(X),temp)
new_theta=theta+learning_rate*temp1
new_theta0=new_theta[0][0]
new_theta1=new_theta[1][0]

while((cost(theta0,theta1,X,Y)-cost(new_theta0,new_theta1,X,Y))>epsilon):
	 theta0=new_theta0
	 theta1=new_theta1
	 theta_x=np.append(theta_x,theta0)
	 theta_y=np.append(theta_y,theta1)
	 theta=np.array(([theta0],[theta1]))
	 hypothesis=np.matmul(X,theta)
	 temp=Y-hypothesis
	 temp1=np.matmul(np.transpose(X),temp)
	 new_theta=theta+learning_rate*temp1
	 new_theta0=new_theta[0][0]
	 new_theta1=new_theta[1][0]
	
print(theta)
fig=plt.figure()
ax=fig.add_subplot(111,projection='3d')
z=np.array([])
for i in range(len(theta_x)):
	 z=np.append(z,cost(theta_x[i],theta_y[i],X,Y))
ax.scatter(theta_x,theta_y,z)
plt.show()

Result
Learned parameters:

�

�

θ0 = 9.89620827e − 01
θ1 = 8.64285842e − 04

�16

Hypothesis Function

Locally Weighted Linear Regression
Locally Weighted Linear Regression (LWR) generalizes the the ideas of linear regression
to model a non-parametric learning algorithm where the different training examples are
weighed differently. The cost function is hence altered to be written as:

� .

where � , � is the bandwidth parameter, this controls how fast

the weights will off with distance.

The LWR therefore helps to fit perfectly non-linear data since every prediction depends
on its neighboring data points.

The output is defined as �

J(θ) =
1
2

m

∑
i=1

w(i)(hθx(i)) − y(i))2

w(i) = exp(−
(x(i) − x)2

2τ2
) τ

y = θT x .

�17

Normal Equations
The normal equations gives a beautiful mathematical derivation for finding the learning
parameters in the linear regression model. It takes a more direct, calculus oriented
approach to find the value of � for which the cost function � shall be minimized.

The input features are defined by a design matrix or the feature matrix, X, an m x n
matrix where m is the number of training examples and n is the number of features of
the input. � is the output vector or the target vector. The cost function in matrix
notation can be written in the form:

� .

Hence the derivative of the cost function is given by (using matrix calculus),

� .

To minimize � , it is equated to 0 and the value of � that minimizes � is:

�

� .

Normal Equation for Locally Weighted Linear Regression
For locally weighted linear regression, the cost function, � can be written as:

� .

Similar to the case of the linear regression, in order to find the normal equation for the
parameters in the case of LWR, the matrix derivative of � is set to 0 given by:

�

�

 � .

Implementation
Problem: Locally Weighted linear Regression in Normal Form.

Data Set: The data set includes two files WeightedX.csv and WeightedY.csv
corresponding to the input and the output values respectively.

Bandwidth Parameter: �

Code
import numpy as np
from numpy.linalg import inv
import matplotlib.pyplot as plt

x=np.genfromtxt('weightedX.csv',delimiter=',')
y=np.genfromtxt('weightedY.csv',delimiter=',')

X=np.c_[np.ones(len(x)),x]
Y=np.c_[y]

θ J(θ)

⃗y

J(θ) =
1
2

(Xθ − ⃗y)T(Xθ − ⃗y)

▽θ J(θ) = XT Xθ − XT ⃗y
J(θ) θ J(θ)

XT Xθ = XT ⃗y
θ = (XT X)−1XT ⃗y

J(θ)
J(θ) =

1
2

(Xθ − ⃗y)TW(Xθ − ⃗y)

J(θ)
▽θ J(θ) = XTW Xθ − XTW ⃗y
XTW Xθ = XTW ⃗y
θ = (XTW X)−1XTW ⃗y

τ = 0.8

�18

theta=np.matmul(np.matmul(inv(np.matmul(X.transpose(),X)),X.transpose()),Y)

print(theta)

plt.plot(x,theta[0][0]+theta[1][0]*x,'r')
plt.scatter(x,y)
plt.show()

def calculate_weight(x1,x,tau):	 	 	 	 #to return W for each data point
	 return np.diag(np.exp(((x1-x)**2)/(-2*tau*tau)))
#Linearly weighted linear regression

weighted_hypothesis=np.array([])

for i in x:
	 W=calculate_weight(i,x,0.8)
	
theta1=np.matmul(np.matmul(np.matmul(inv(np.matmul(np.matmul(X.transpose(),W),X)),
X.transpose()),W),Y)
	 weighted_hypothesis=np.append(weighted_hypothesis,theta1[0][0]+theta1[1]
[0]*i)

#print(weighted_hypothesis)	
plt.plot(x,weighted_hypothesis,'r')
plt.scatter(x,y)
plt.show()

Result
Learned Parameters for linear regression using Normal Equations.

�

�

(The results given below are in the plots of linear regression curve using the Normal
Equation and the locally weighted linear regression using Normal Equation respectively.)

θ0 = 0.32767322
θ1 = 0.17531247

�19

�20

Classification
The classification problem is just like the regression problem with the only exception
that the output vector can take values from a specific range of outputs rather than
continuous values. For input variables, the corresponding outputs are called labels and
the classification algorithms may be multi-label or binary classification which separates
the output into two classes 1 and 0, which are also referred to as positive class or
negative class respectively.

Logistic Regression
In logistic regression the The hypothesis function is defined as:

� ,

where

�

This is called the logistic or the sigmoid function and enforces the hypothesis to remain
bounded between 0 and 1.

For logistic regression, the assumptions taken are:

�

�

where the first equation is read as, probability of y= 1, given x and parametrized by � .

This can be written more compactly as :

� .

Assuming the m training examples to be generated independently, the likelihood of the
parameters is written as

�

�

� .

Since it is easier to maximize the log of the likelihood, the log likelihood function, the
optimization problem for logistic regression is considered to be the problem of finding
the maximum value of parameter fitting the log likelihood.

� .

The maximization is done through matrix calculus which gives the gradient ascent rule:

�

An important observation is that this rule is similar to the parameter upgrade rule of
linear regression, however the hypothesis function is entirely different in this case.

hθ(x) = g(θT x) =
1

1 + e−θT x

g(z) =
1

1 + e−z

P(y = 1 |x; θ) = hθ(x)
P(y = 0 |x; θ) = 1 − hθ(x)

θ

P(y |x; θ) = (hθ(x))y(1 − hθ(x))1−y

L(θ) = p(⃗y |X; θ)

L(θ) =
m

∏
i=1

p(y(i) |x(i); θ)

L(θ) =
m

∏
i=1

(hθ(x(i)))y(i)(1 − hθ(x(i)))1−y(i)

l(θ) = log L(θ) =
m

∑
i=1

y(i) log(hθ(x(i)))(1 − y(i))log(1 − hθ(x(i)))

θj = θj + α(y(i) − hθ(x(i)))x(i)
j .

�21

Generative Learning Algorithms
The classification algorithms that have been talked about until now model � ,
the conditional distribution of y given x. The classification algorithm for example,
logistic regression mapped the output based on the input features and then
accordingly trained a hypothesis function according to which the decision was made
based on what side of the decision boundary the unseen training example resides.
However the algorithm can also be trained in another manner by making the algorithm
first understand the features of a particular kind by exposing the algorithm explicitly
and then after the algorithm has learned the features, it is tested on the unseen
examples to predict the class of higher probability.

Algorithms that try to learn � directly (such as logistic regression) or algorithms
that try to learn mapping directly from the space of inputs � to the labels {0,1} are
called discriminative learning algorithms.
The algorithms that instead model � (and �) are called generative learning
algorithms. After modeling � and � , the algorithm uses the Bayes Rule to
derive the posterior distribution of y given x:

� , where � .

Gaussian Discriminative Analysis
This is among the most widely used generative learning algorithms. In this model, it is
assumed that � is distributed according to a multivariate normal distribution.

Multivariate Normal Distribution
The multivariate normal distribution in n-dimensions, is parametrized by a mean vector
� and a covariance matrix � where � is symmetric and
positive semi-definite. The distribution is defined as:

� .

� is the determinant of the matrix � .

The Gaussian Discriminative Analysis Model
In this classification problem, x are the input features which are continuous-valued
random variables. The Gaussian Discriminative Model (GDA) models p(x|y) using
multivariate normal distribution. The model is:

� ;

� ;

� .

The distributions are given by:

�

p(y |x; θ)

p(y |x)
χ

p(x |y) p(y)
p(y) p(x |y)

p(y |x) =
p(x |y)p(y)

p(x)
p(x) = p(x |y = 1)p(y = 1) + p(x |y = 0)p(y = 0)

p(x |y)

μ ∈ ℜn ∑ ∈ ℜn×n ∑ ≥ 0

𝒩(μ, ∑) = p(x; μ, ∑) =
1

(2π)n/2 |∑ |1/2 exp(−
1
2

(x − μ)T(∑)−1(x − μ))

|∑ | ∑

y ∼ Bernoulli(ϕ)
x |y = 0 ∼ 𝒩(μ0, ∑)
x |y = 1 ∼ 𝒩(μ1, ∑)

p(y) = ϕy(1 − ϕ)1−y

�22

�

�

The parameters of the model are � .

The log-likelihood of the data is given by

�

	 	 �

By maximizing l with respect to the parameters, the maximum likelihood estimate of
the parameters is found to be:

	 	 	 	 �

	 	 	 	 �

	 	 	 	 �

	 	 	 � .

where � when x is true and 0 otherwise. This is the indicator vector notation.

Implementation

Problem: Separating out salmons from Alaska and Canada. Each salmon is
represented by two attributes � and � depicting growth ring diameters in 1) fresh
water, 2) marine water.

Data Set: “q4x.dat” stores the two attribute values with one entry on each row.
“q4y.data” stores the target values (�) on respective rows.

Assumption: �

Code
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x=np.genfromtxt('q4x.dat',dtype=int)

p(x |y = 0) =
1

(2π)n/2 |∑ |1/2 exp(−
1
2

(x − μ0)T(∑)−1(x − μ0))

p(x |y = 1) =
1

(2π)n/2 |∑ |1/2 exp(−
1
2

(x − μ1)T(∑)−1(x − μ1))

ϕ, ∑ , u0, and μ1

l(ϕ, μ0, μ1, ∑) = log
m

∏
i=1

p(x(i), y(i); ϕ, μ0, μ1, ∑)

= log
m

∏
i=1

p(x(i) |y(i); μ0, μ1, ∑)p(y(i); ϕ)

ϕ =
1
m

m

∑
i=1

1{y(i) = 1}

μ0 =
∑m

i=1 1{y(i) = 0}x(i)

∑m
i=1 1{y(i) = 0}

μ1 =
∑m

i=1 1{y(i) = 1}x(i)

∑m
i=1 1{y(i) = 1}

∑ =
1
m

m

∑
i=1

(x(i) − μy(i))(x(i) − μy(i))T

1{x} = 1

x1 x2

y(i) ∈ {Alaska, Canada}
(∑)0 = (∑)1 = ∑

�23

y=np.genfromtxt('q4y.dat',dtype=str)
y=np.c_[y]

def model_feature(feature,mean,covariance):
	 temp = np.exp(np.matmul(np.matmul((feature-mean).transpose(),
np.linalg.inv(covariance)), (feature-mean)) / (-2))
	 return temp / (((2*np.pi)**(feature.shape[0]/2)) * np.linalg.det(covariance))
	

indicator_1=0
for i in y:
	 if i=='Canada':
	 	 indicator_1+=1
	 	
indicator_0=y.shape[0]-indicator_1

#Calculating Phi
phi=indicator_1/y.shape[0]

#Calculating Mu0
Mean_0=0
for i in range(0,y.shape[0]):
	 if y[i]=='Alaska':
	 	 Mean_0+=x[i]
	 	
Mean_0=Mean_0/indicator_0
Mean_0=np.c_[Mean_0]

#Calculating Mu1
Mean_1=0
for i in range(0,y.shape[0]):
	 if y[i]=='Canada':
	 	 Mean_1+=x[i]
	 	
Mean_1=Mean_1/indicator_1
Mean_1=np.c_[Mean_1]

#Calculating Covariance
covariance=0
for i in range(0,y.shape[0]):
	 if y[i]=='Alaska':
	 	 covariance+=(np.matmul((x[i].transpose()-Mean_0),(x[i].transpose()-
Mean_0).transpose()))
	 else:
	 	 covariance+=(np.matmul((x[i].transpose()-Mean_1),(x[i].transpose()-
Mean_1).transpose()))

�24

	 	
covariance=covariance/y.shape[0]

#printing mean and variances
print("The Mean for the Alaska training set is\n",Mean_0,"\n")
print("The Mean for the Canada training set is\n",Mean_1,"\n")
print("The Covariance Matrix for the multivariate gaussian distribution
is\n",covariance,"\n")

test=np.array([[0],[0]])
test[0][0] = int(input('Enter the features of the fish\n'))
test[1][0] = int(input())

#Calculating the probability of the fish coming from Alaska
probability_Alaska = model_feature(test,Mean_0,covariance)*(1-phi)
#calculating the probability of the fish coming from Canada
probability_Canada = model_feature(test,Mean_1,covariance)*phi

if probability_Alaska > probability_Canada :
	 print('Fish is from Alaska\n')
else:
	 print('Fish is from Canada\n')
	

fig=plt.figure()
ax=fig.add_subplot(111,projection='3d')

for i in range(0,y.shape[0]):
	 if y[i]=='Alaska':
	 	 ax.scatter(x[i][0],x[i][1],zs=0,c='r',marker='x')
	 else:
	 	 ax.scatter(x[i][0],x[i][1],zs=0,c='b',marker='o')
	 	
ax.set_xlabel('Fresh Water')
ax.set_ylabel('Marine Water')

c = np.matmul(np.matmul(Mean_0.transpose(),np.linalg.inv(covariance)), Mean_0) -
np.matmul(np.matmul(Mean_1.transpose(),np.linalg.inv(covariance)), Mean_1) -
2*np.log((1-phi)/phi)
b = 2 * np.matmul((Mean_1-Mean_0).transpose(),np.linalg.inv(covariance))

x_1=np.zeros((1,x.shape[0]))
x_2=np.zeros((1,x.shape[0]))

for i in range(0,x.shape[0]):
	 x_1[0][i]=x[i][0]

�25

	 x_2[0][i]=x[i][1]
	
print(b)
print(c)

plt.plot(x_1,((b[0][0]*x_1+c)/(-1*b[0][1])),'r')

ax.view_init(elev=90,azim=90)
plt.show()

Result

�

�

�

Input Feature values: 132 and 42.

μ0 = [98.38
429.66]

μ1 = [137.46
366.62]

∑ = [82541.104 1410.732
1410.732 82541.104]

�26

Support Vector Machines
Support Vector Machines (SVMs) are among the best supervised learning algorithms.
They take into exhaustive consideration of vector representation of the training
examples and divide the linearly separable labels with the help of margin and the
greater the margin, the more accurate prediction there can be. Though they are defined
for linearly separable classifiers, they are extended to non-linearly separable classifiers
with the help of Kernels, which make the SVMs work like a charm for non-linearly
separable data.

A single decision rule is defined which decides the class of label based on the decision
rule. The decision rule is the median line of the gutter, which is defined as the vectors
lying on the margins of the two types of labels. The width is defined as the width of the
street.

The basic intuition of SVMs as stated earlier is that the greater the width of the street,
the greater the accuracy of prediction. Hence the task is to maximize the width under a
given set of constraints. This is beautifully accounted by the Lagrange’s multipliers.

Decision Rule: � for positive examples

Function: �

Constraint: �
where � for positive and negative examples respectively.

� is the input data in vector space.

� is the vector perpendicular to the median line of the margin.

b is a positive constant.

Using Lagrange’s Multipliers,

� ,

Differentiating to find the extremums, it can be proved that the decision rule depends
only on the dot product of the unknown � and the sample vectors � .
Hence the decision rule becomes,

� then it will belong to positive class else the unknown will belong

to the negative class.

SVM Optimization Problem:

�

where, � is the tradeoff between increasing the margin-size and ensuring that � lies on
the correct side of the margin.

⃗w . ⃗u + b ≥ 0
1
2

| | ⃗w | |2

yi(⃗xi . ⃗w + b) − 1
yi = + 1 and − 1

⃗xi ⃗w

L =
1
2

| | ⃗w | |2 −
m

∑
i=1

αi[yi(⃗xi . ⃗w + b) − 1]

⃗u ⃗xi

m

∑
i=1

αiyi ⃗xi ⃗u + b ≥ 0

[
1
m

m

∑
i=1

ma x(0,1 − yi(⃗w . ⃗x + b))] + λ | | ⃗w | |2

λ ⃗x

�27

Implementation

Problem: Build a handwritten digit classifier using the mini-batch Pegasos algorithm
and the customized solver LIBSVM.

Data Set: A subset of the MNIST dataset with 2500 training examples and 2500 testing
examples. Each row in the data file corresponds to an image of size 28 x 28,
represented as a vector of grayscale pixel intensities followed by the label associated
with the image. Every column represents a feature where the feature value denotes the
grayscale value (0-255) of the corresponding pixel in the image. There is a feature for
every pixel in the image. Last column gives the corresponding label.

Algorithm: The “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM” has been
used to solve for w and b. The mini-batch size is taken to be 100. The algorithm is
given by:

Code
import numpy as np
X=np.genfromtxt('mnist/train.csv',delimiter=',',dtype=int)
X=np.c_[np.ones((X.shape[0]),dtype=int),X]
y=np.c_[X[:,X.shape[1]-1]]
X=X[:,:-1]
lambda_1=0.00001
Y=np.zeros((X.shape[0],10),dtype=int)-1
k=100
T=1000
for i in range(0,y.shape[0]):
	 Y[i][y[i]-1]=1

	

�28

def main():
	 W=np.zeros((X.shape[1],1))
	 for label in range(0,10):
	 	 w=np.c_[np.zeros((X.shape[1]),int)]
	 	 for t in range(1,T+1):
	 	 	 A=np.random.uniform(0,X.shape[0]-1,k)
	 	 	 for i in range(0,A.size):
	 	 	 	 A[i]=int(A[i])
	 	 	 A_plus=np.array([])
	 	 	 for i in A:
	 	 	 	 if((np.matmul(w.transpose(),np.c_[X[int(i),:]])*Y[int(i)][label])
[0][0]<1):
	 	 	 	 	 A_plus=np.append(A_plus,int(i))
	 	 	 	 #print(int(i))
	 	 	 eta=1/(lambda_1*t)
	 	 	 sum_total=0
	 	 	 for i in A_plus:
	 	 	 	 sum_total+=(Y[int(i)][label]*X[int(i),:])
	 	 	 w=(1-eta*lambda_1)*np.c_[w]+(eta/k)*np.c_[sum_total]
	 	 W=np.append(W,w,axis=1)
	 W=W[:,1:]
	 return W
	 	
def testing(W):
	 X=np.genfromtxt('mnist/test.csv',delimiter=',',dtype=int)
	 X=np.c_[np.ones((X.shape[0]),dtype=int),X]
	 y=np.c_[X[:,X.shape[1]-1]]
	 X=X[:,:-1]
	 Y=np.zeros((X.shape[0],10),dtype=int)-1
	 for i in range(0,y.shape[0]):
	 	 Y[i][y[i]-1]=1
	 result=np.matmul(X,W)
	 print(result[0:100,:])
	 correct=0
	 for i in range(0,result.shape[0]):
	 	 max_1=-1000
	 	 for j in range(0,result.shape[1]):
	 	 	 if result[i][j]>0:
	 	 	 	 max_1=(j+1)%10
	 	 if y[i]==max_1:
	 	 	 correct+=1
	 	 print(max_1)
	 print((correct/X.shape[0])*100,"%")
	
W=main()
testing(W)

�29

Result
The prediction accuracy from the algorithm is 77.37%.

LIBSVM Implementation
�

C=1.0
Kernel: Gaussian Kernel, (�).

Code
import numpy as np
from svmutil import *

X=np.genfromtxt('../../mnist/train.csv',delimiter=',',dtype=int)
y=np.c_[X[:,X.shape[1]-1]]
X=X[:,:-1]
X=X/255
X=X.astype(str)
y=y.astype(str)

for i in range(0,X.shape[0]):
	 for j in range(0,X.shape[1]):
	 	 X[i][j]=str(j)+":"+X[i][j]
	 	
np.savetxt('data.txt',np.c_[y,X],fmt='%s')

a,b=svm_read_problem('data.txt')
prob=svm_problem(a,b)
param=svm_parameter('-s 0 -t 0 -c 1')
m=svm_train(prob,param)

X_test=np.genfromtxt('../../mnist/test.csv',delimiter=',',dtype=int)
y_test=np.c_[X_test[:,X_test.shape[1]-1]]
X_test=X_test[:,:-1]
X_test=X_test/255
X_test=X_test.astype(str)
y_test=y_test.astype(str)

for i in range(0,X_test.shape[0]):
	 for j in range(0,X_test.shape[1]):
	 	 X_test[i][j]=str(j)+":"+X_test[i][j]

γ = 0.05

K(x, z) = exp−γ*||x−z||2

�30

np.savetxt('data_test.txt',np.c_[y_test,X_test],fmt='%s')
a_test,b_test=svm_read_problem('data_test.txt')
p_labels, p_acc, p_vals = svm_predict(a_test,b_test,m)
print(p_acc)
param=svm_parameter('-s 0 -t 2 -g 0.05 -c 1')
m=svm_train(prob,param)
p_labels, p_acc, p_vals = svm_predict(a_test,b_test,m)
print(p_acc)

Result
The prediction accuracy from the algorithm is 97.23%.

Interaction of Game Theory and Machine Learning

The proposed project has explored the foundational concepts of the fields of game
theory and machine learning. Though the two fields are well researched areas in
themselves, the research area lying at the interface of both the fields is developing at
rapid rate. The advancement of computing power has made the development of
applications in the fields of deep learning and reinforcement learning highly optimal.
This has influenced the application of these algorithms in the areas where self
interested rational agents interact among themselves which heralds the application of
game theoretic solution strategies in this area.

As discussed in the theoretical description of repeated games and stochastic games,
the stochastic games are a natural extension of Markov Decision Process (MDPs) to
include multiple agents. The MDPs are an integral part of reinforcement learning in
which the agent learns from about success and failure through reward and punishment.

Similarly, a number of other fields in artificial intelligence and even in areas of
economics are taking the advantage of the usage of the both machine learning and
game theory as tools to improve upon the existing state of the art techniques. The
various applications of machine learning in algorithmic game theory concepts have
been proposed as follows:

�31

Machine Learning in Selfish Routing
The inefficiency of equilibria is quantified using the concept of price of anarchy which
distinguishes between the selfish outcome of the agents in comparison to the optimal
outcome of the game. This is exemplified through the Pigou’s example, explained by
the economist Pigou in 1920.

The Pigou’s example illustrates a very simple network problem which illustrates the
source node, s and the terminal node, t with two routes between them with costs 1 and
x, respectively where x depends on the number of users using the specific edge. The
upper edge on the other hand represents a constant cost edge. The costs are labelled
with the cost function c(x). In an equilibrium approach, all the users prefer the lower
route which gets congested as the number of users increase through that route and
hence gives a total cost of 1 when all the users use the lower edge. The upper edge on
the other hand could have provided a more optimal solution with half users using the
upper edge and the other half using the lower edge. The total cost in such case would
have been 3/4. The price of anarchy calculated in this case would therefore be 1/(3/4) =
4/3. This suboptimal performance of the network can be enhanced in the case of
repeated games when the agents learn about the previous inefficiencies. The machine
learning prediction models can therefore be used to improve the routing efficiency in
the network with directing the node to route half the traffic through the upper edge and
the other half through the lower edge.

Games improving the Web
Construction of Empire State Building: 7 million human-hours. The Panama canal: 20

million human-hours. Estimated number of human hours spent playing solitaire around
the world in one year: 9 billion. �

The number of users on the internet playing games is extremely large. Therefore there
has been a lot of work in mechanism design to develop games which would in fact
improve the quality of web services. Some of the most popular game which have been
responsible for improving the functionality of the Web are:

[11]

�32

s t

c(x) = 1

c(x) =x

Figure: Pigou’s Example

• ESP game (Google Image labeler): This game was developed to to resolve the
problem of data classification, which is a difficult task for the computers even with
sophisticated learning algorithm and efficient hardware. This game used the
computational ability of humans to classify the images and then train the computer
for the same.

• CAPTCHA: CAPTCHA is an acronym for Completely Automated Public Turing test to
Computers and Humans Apart. This test is used on various authentication platforms
and is mostly used for network security to disallow hackers from running scripts to
distort sensitive data. Various models in artificial intelligence are tested on the
CAPTCHA and are predicted to be able to solve hard AI problems if they are
successful in solving CAPTCHA. There have been increasing use of machine learning
and Optical Character Recognition, machine learning attacks on CAPTCHAs to
invade the network security.

Electronic Market Design
The number of online markets has grown throughout the world with companies like
Google, Amazon and eBay bringing customers and markets online. This has resulted in
a large number of mechanism being designed for the revenue generation for the
companies and at the same time convenient models of expenditure for the customer.
The pay-per click policy by google was a major revenue model change for the online
mechanisms. Similarly research for online algorithms based on the changing users are
being designed and machine learning is being incorporated to understand particular
users and learn their choices which are then used for their future choices. This has
therefore brought about exciting algorithmic challenges which are solved by using the
concepts of machine leaning, economics theory and game theory.

Conclusion

The major results highlighted by this paper include the various solution models in game
theory and the efficient approach of the usage of different models in different
scenarios. The second part illustrates the comparison and implementation of the basic
as well the sophisticated machine learning regression and classification algorithms
which can be used and further improved upon. The last part of the paper is based on
the interface of these two exciting fields and how they are coming together to solve
exciting challenges and to improve the existing problems by making the solutions more
efficient and optimum. The future scope of work lies in implementing the algorithms for
implementing these ideas in developing fields of 5G Wireless Networks and electronic
market design for online shopping and working on new routing protocols using these
analysis methods form the algorithmic game theory.

�33

