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ABSTRACT 
The field of computer science was revolutionized in the year 1950 by a simple question 
posed by A.M. Turing, “Can machines think” and thought about the ‘imitation game’. 
Since then the field of Artificial Intelligence has undergone several revolutionary reforms 
supported by the exponential hardware growth and improvement in the computation 
power. However giving machines the power to understand human language and allow it 
to generate required response is still a non trivial task. This thesis tackles the problem of 
multimodal summarization which is defined as the task of generating output summary 
taking into account the different multimedia data as input. The output summary may be 
presented in single modality or multiple modalities. 

In this thesis, the foundations of natural language processing in general and multimodal 
summarization in specific have been explored. Since the field of Multimodal 
Summarization encompasses the textual, audio and visual dataset, the foundations of 
these modalities have been explored and further built upon. The baseline models have 
been implemented on our own dataset and the widely available dataset to explore the 
existent state of the art techniques. 

The last part of this thesis presents the novel work of this thesis, the MultiModal 
Bidirectional Attention Flow Model (MMBiDAF). The architecture of the model has 
been carefully built to integrate all the modalities and draw similarity between them to 
carefully generate the text which is attentive of both image and audio which further 
receives an attention layer to select from the audio-aware or the image-aware text. The 
model is then able to generate a summary by extracting the most important sentences 
from the given source text. The results of the model have shown to outperform the 
existing state of the art models in the literature. 

The thesis finally concludes by giving scope of the possible future work to further 
improve upon this model and achieve results to infinity and beyond! 
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1. Introduction 
The field of computer science was revolutionized in the year 1950 by a simple question 
posed by A.M. Turing, “Can machines think” and thought about the ‘imitation game’[1]. 
Since then the field of Artificial Intelligence has undergone several revolutionary reforms 
supported by the exponential hardware growth and improvement in the computation 
power.  

The field of Natural Language Processing is a relatively new task in the field of 
Artificial Intelligence. It requires the machine to understand human language and allow it 
to generate required response. This is not a trivial task since the machine needs to 
comprehend the human language which in itself is one of the most remarkable creations 
of human beings and is a gift which has been passed to us through generations.  

To process a passage of text, the NLP community has put decades of efforts into solving 
different tasks for various aspects of text understating, including : 

(a) Part-of-speech tagging. It is the process of marking up a word in a text corpus as 
corresponding to a particular construct in linguistics. It is similar to identifying whether a 
word is a noun, verb, adjective, adverb or any other construct of the language.    

(b) Named-entity recognition. It is the task of entity recognition which encompasses 
entity identification, entity chunking and entity extraction. It allows the machine to 
recognize entities and categorize them in a sentence as the name of a person, 
organization, location or other proper nouns. 

(c) Syntactic parsing. It is the process of understanding the relationship between 
various parts of the sentence if the sentence conforms to the rules of the formal grammar. 
It is important for the language to conform to the rules of the grammar and hence the 
machine must understand the formal rules. 

(d) Coreference resolution. It is important for the machines to understand the entity 
about whom the text is talking about. The task of identifying the subject when a pronoun 
is used in place of the explicit definition of the subject in the sentence is referred to as 
coreference resolution. For example, the task of identifying who is subject in the sentence 
: “She is going to the research lab” when the corpus contains two subjects namely, Vega 
and Polaris. 

Even though entire corpus containing natural language is important, it sometimes 
includes information that is not as important as other information and is rather an 
extension of the main parts used to make things clear. As a result in this age of quick 
access to information, it has become important for us to obtain the salient information of 
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text and understand the complete meaning of the text. This is the main goal of text 
summarization.  

Multimodal summarization is a superset of text summarization and is defined as the 
task of generating output summary taking into account the different multimedia data as 
input. The output summary may be presented in single modality or multiple modalities. 
The ongoing research has proven that inclusion of audio and video elements as a part of 
the dataset may greatly improve the output summary. The output summary will be able to 
take into account the audio and the visual features along with text as input. 

The motivation for this work was obtained in my Seventh semester while I was working 
on a project in machine comprehension. I wanted to build a system which could 
summarize documents for the people with special needs. I wanted to build a system 
which could summarize the text in such a manner that the people with special needs are 
able to understand any text without much difficulty. Though I tried to gain suggestions 
for this work through various Professors and psychology resources, I was unable to get 
the required dataset for this task. However, while I was working towards this goal, I was 
introduced to the problem of multimodal summarization and this allowed me to enhance 
my skills and explore more opportunities in the field of NLP while working towards the 
task of text summarization for social good.
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Chapter I 
Multimodal Summarization : 

Foundations



2. Automatic Text Summarization 
Automatic text summarization is the process of shortening the available information and 
presenting only the important parts of text to avoid information overload. This task has 
become increasingly important today because of the requirement of quick access and 
understating of the complete document or a list of documents. As a result this task has 
become an active area of research among the NLP community researchers. Automatic 
text summarization allows the machine to handle this task of shortening the document for 
human feasibility. The application of text summarization is being increasingly realized in 
fields beyond computer science including medicine, law and search results on the World 
Wide Web. 

The literature defines two methods for obtaining the summary of the text which are 
namely : 

(a) Extractive summarization. Extractive summaries are those that are produced 
through a process where the text’s most important sentences are concatenated together 
without altering the sentences in any way. In other words, this method of summary 
generation works by simply “extracting” the most relevant sentences from a text. This 
method is similar to human beings highlighting the most important sentences in a text. 
Similarly the machine performs the task of finding the most important sentences in the 
document or across documents through a defined algorithm and combines those 
sentences to produce an output summary. 

(b) Abstractive summarization. Abstractive summaries are those in which the 
important themes from a text are identified and then new sentences are generated based 
upon a deeper understanding of the material. In other words, abstractive summaries are 
those created using a more “abstract” understanding of the material to generate a new 
sentence representation of it. The technique of abstractive summarization is akin to the 
human beings generating notes from the given the text document. Hence similar to the 
task performed by humans, the machine first understands and comprehends the natural 
language and then generates sentences word by word from the output vocabulary. The 
output may hence sometimes contain words which are not present in the input data which 
is never possible in corresponding extractive summarization. 
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2.1 History 

2.1.1 Early Approaches 

The work in the field of automatics summarization has been going on for a long time now 
and is being actively improved upon with new state-of-the-art techniques replacing the 
traditional automatic summarization models. H.P. Luhn’s seminal work[2] of 
automatically creating literature abstracts was based on the correlation of frequency with 
importance of a word in a sentence. The various traditional tasks for identification of 
important sentences sentences is as follows : 

2.1.1.1 Identifying Important Sentences 

The first task of extractive summarization is to be able to find a metric through which the 
computer shall be able to identify and rank the importance of various sentences occurring 
in the document. Several salience measurement techniques have been proposed in the 
literature and the earliest approaches regarded the frequency of a word’s occurrence as a 
factor of significance of word and in his pioneer work [2], H.P. Luhn defined the 
significance of a sentence as being contingent with the significance of the contained 
words. He defined significance of a word as : 

Where : p(w) = Probability of a word, w occurring 
    c(w) = Number of times a word w occurs in the input (frequency) 
    N = Total number of words in the input 

2.1.1.2 TF * IDF Weighting 

It is the Term Frequency * Inverse Document Frequency (TF * IDF) [3] metric which 
signifies the importance of the word. It is based on the idea that the most important words 
are those that occur frequently within given document but infrequently in other 
documents of same genre. It is calculated as follows: 

Where : c(w) = Number of times a word w occurs in the input (frequency) 
    d(w) = Size of background corpus 
    D = Size of document corpus 
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2.1.1.3 Graph Based Methods 

These methods incorporate word-frequency into a formalized framework within which 
the sentence-to-sentence relationship is analyzed. The main assumption of these 
algorithms are that the sentences which are most similar to other sentences within a 
document or across various documents are the most salient sentences and need to be 
included summary. In order to find the most central sentences, graph-based models build 
a graph in which sentences are the vertices in the graph with edges connecting related 
sentences. The notion of “Related Sentences”  is quantified by a similarity metric that is 
used as an edge weight between the two vertices. The cosine similarity is the most widely 
used metric which takes into account the vector representation of the sentences using the 
TF*IDF weights. In order to use this method, sentences are taken as N-dimensional 
vectors where N is the number of uniquely occurring words in the document. Each of the 
vector values are initialized to 0 and then for each word in the sentence, the 
corresponding element in the N-dimensional vector is set to that word’s TF*IDF weight.
[4] 

 where : 

      

The cosine similarity between two sentences is then given by : 

2.1.1.4 Degree Centrality 

This is a graph analytics technique. It is defined as the in-degree of its corresponding 
node in the similarity graph. Hence in order to calculate the degree centrality, a similarity 
graph must first be constructed and then only the sentences which have a similarity 
greater than a particular threshold must be selected.  

2.1.1.5 Lex Rank 

LexRank [5] is an unsupervised approach to text summarization based on graph-based 
centrality scoring of sentences and the PageRank algorithm[6]. The main idea is that 
sentences “recommend” other similar sentences to the reader. Thus, if one sentence is 
very similar to many others, it will likely be a sentence of great importance. The 
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importance of this sentence also stems from the importance of the sentences 
“recommending” it. Thus, to get ranked highly and placed in a summary, a sentence must 
be similar to many sentences that are in turn also similar to many other sentences. This 
makes intuitive sense and allows the algorithms to be applied to any arbitrary new text. 
The constructed graph included directed edges connecting sentences in a binary fashion; 
two sentences were connected only if their cosine similarity was greater than a given 
threshold value. After generating the graph, PageRank was applied to the graph which 
ranked and extracted the sentences on order of their PageRank scores. Erkan & Radev 
found that this method was able to extract the most important sentences of the document, 
in the best case, better than all other baselines of the time. Another algorithm very similar 
to Lex Rank is Text Rank[7] which uses a slightly different metric for sentence similarity 
and can only be applied for single-document summarization while Lex Rank can be 
applied for multi-document summarization.  

2.1.2 Machine Learning Approaches 

The advances in the field of machine learning have had a major impact on the task of 
automatic text summarization. With increasing number of features including word 
frequency, sentence location, sentence length, and title composition being suggested for 
use in identifying salience, having a statistical means to determine the best combination 
of such features is incredibly valuable. The main drawback for machine learning methods 
is however the unavailability of labeled data which needs to be generated in order to be 
able to produce good results and allow the algorithms to train on the labeled data and 
produce their own hypothesis. 

2.1.2.1 Naive-Bayes Methods 

Kupiec et al. described a method that is able to learn from data in 1995 [8] The features 
they were looking at included the following : 
• Sentence length: Comparison of length of sentence with a specific threshold value. 
• Fixed-Phrase: If the sentence contains a specific phrase. 
• Location in Paragraph: Where does the sentence occur in the text (Only paragraphs 

that occur towards the beginning and end of the document are considered). 
• Thematic Words: If the sentence contains many frequently occurring words. 
• Uppercase Words:If the sentence includes many uppercased words. 

Their results indicated that a combination of location in paragraph, fixed-phrase, and 
sentence length yielded the best results with the incorporation of thematic words actually 
leading to poorer performance. Even though they were able to achieve good results but 
their results were based on the Naive-Bayes assumption which states that the probability 
of occurrence of each sentence is independent of each other. However this assumption is 
not completely true since their exists sequential dependence in natural language. 
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2.1.2.2 Hidden Markov Model 

In contrast with the existing feature based approaches for extracting the most important 
sentences, the Hidden Markov Model (HMM) Conroy and O’leary[9] modeled the 
problem of extracting sentences using HMM and to incorporate the sequential 
dependence of sentences and relax the assumption of independence required by the Naive 
Bayes Classifier. They predicted that the probability of one sentence being included in a 
summary is dependent upon whether or not the previous sentence was included. This 
hypothesis naturally motivates the use of an HMM, as the model does not require 
independence between sentence i and sentence i−1. They found that this model 
outperformed all the existing baseline models at that time since they took the sequential 
dependence of the sentences into account. 

2.1.3 A Resurgence : Deep Learning Era 

Yan LeCun, Yoshua Bengio and Geoffrey Hinton were awarded the Turing Award for 
conceptual and engineering breakthroughs that have made deep neural networks a critical 
component of computing in March 2019. In their Review paper [10], they have defined 
Deep Learning methods as “representation learning methods with multiple levels of 
representation, obtained by composing simple but non-linear modules that each transform 
the representation at one level (starting from raw input) into a representation at a higher, 
slightly more abstract level.” Representation learning is the set of methods that allow the 
machines to be fed with raw data and they then automatically discover the representations 
required for detection and classification. Rumelhart et al. [11] in their breakthrough paper  
on the experimental proof that backpropagation can generate useful internal 
representation of incoming data in the hidden layers of neural networks. Since then 
backpropagation (Figure 2) has been used extensively to calculate gradients of various 
loss functions with respect to various parameters in computationally efficient manner.  

One of the most beautiful aspects of deep learning is that it does not require humans to 
design layers and incorporate features. The network learns the features itself with the help 
of data and greater the number of layers of artificial neurons, greater is the non linearity 
and the network is able to capture higher dimensional classification tasks with even more 
accuracy. This however comes at the cost of higher computation requirement. 
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Figure 1 : Markov Model to extract upto three sentences from a document.



The field of Natural Language Processing went through a complete resurgence when the 
state of the deep learning techniques were applied to understand the text. The sequential 
learning required for understanding the natural language was obtained by the recurrent 
neural networks which remembered the previous hidden state of the neural network and 
computed the next hidden state as a linear transformation of the concatenated input and 
the previous hidden state. The recurrent neural networks gave the power of memory to 
the deep learning models. 

2.1.3.1 Recurrent Neural Networks 

Recurrent neural networks (RNNs) process the next hidden state taking into account the 
previous hidden state. They process an input sequence one element at a time, maintaining 
in their hidden units a ‘state vector’ that implicitly contains information about the history 
of all the past elements of the sequence. The unrolled version of the RNNs allow us to 
visualize how we consider the outputs of the hidden units at discrete time units.  
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Figure 2 : Multilayer neural networks and backpropagation. (a) A multilayer neural network 
can distort the input space to make the classes of data linearly separable. (b) Chain rule 
depicts how small changes are propagated. (c) The equations are used for computing the 
forward propagation in a neural network with two hidden laters and one output layer. (d) 
The equations used for computing the backward pass. At each hidden layer, the error 
derivatives are calculated with respect to the output of each hidden unit. 



Because of the powerful memory elements and the efficient backpropagation techniques, 
the use of recurrent networks in language modeling has become ubiquitous however the 
problem there exists the problem of exploding or vanishing gradients over the various 
timesteps. Several reforms have been done with new recurrent units being introduced to 
tackle the problem of gradients over the time steps however this problem still exists in 
training the RNNs. These problems in training recurrent networks have been explained as 
follows: 

(a) Vanishing gradient. The gradients with respect to inputs occurring much earlier 
in the neural network become increasingly less with the increasing time steps. It can be 
visualized as the effect of a word which occurs much earlier in the text does not have any 
influence over the word that shall be predicted next in language modeling. This is a major  
problem since the number of timesteps over which this problem occurs is extremely less. 

(b) Exploding gradient. This is the other extreme of vanishing gradient. In this 
problem, the gradient of the function with respect to inputs occurring in the past keeps on 
increasing at each time step. This makes the word that is being predicted next, heavily 
dependent on the word that occurred a long time back. This is also a major problem 
during training time.  

The RNN model is defined mathematically by the following equations : 

Where s is the hidden state, x is the network input and y is the network output. 
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Figure 3 : An unrolled recurrent neural network., where x corresponds to inputs at 
discrete time steps, s corresponds to hidden state at distinct time step and o corresponds 
to the output at discrete time step.

s(t) = sig moid (Wss(t−1) + Wx x(t) + b1)
̂y = sof t m a x (Us(t) + b2)

P(x(t+ 1) = wj |x(t), x(t−1), …, x(1)) = ̂yj
(t)



2.1.3.2 Long Short Term Memory 

To counter the existing problem of vanishing gradient, the researchers in the NLP 
community came up with a special type of RNN cell called the Long Short Term 
Memory. Though this memory cell is much more complex than the Vanilla RNN but it 
captures the long-term language dependencies extremely well. They were introduced by 
Hochreiter & Schmidhuber [12] in 1997.  

 

The LSTMs are able to overcome the problem of vanishing gradients with the help of cell 
state which is the horizontal line running on top of the repeating modules. This cell state 
flows through all the time steps without much change. The gates in the cell unit allow the 
information to be added or subtracted in during the recurrent time steps.  The LSTMs can 
be beautifully explained through mathematical equations in a manner similar to the 
recurrent neural networks. The step by step walkthrough over the various gates of the 
LSTM can be done as follows: 

(a) Forget gate layer. This gate decides which information to keep and which 
information to discard. It is useful in language modeling when we encounter a new 
subject and wish to forget the information about the previous subject. This is 
mathematically described in the following manner. 

(b) Input gate layer. This decides which values need to be updated. The equation of 
the input gate can be mathematically described in the following manner. 
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Figure 4: The repeating module in an LSTM contains four interacting layers [13].

Forg et Gate : ft = σ (W ( f )x(t) + U ( f )h (t−1) + b( f ))

Inpu t Gate : it = σ (W (i)x(t) + U (i)h (t−1) + b(i))



(c) Candidate gate. The input value and the hidden state can be combined and 
passed through a tanh function to get new candidate values and this is described in 
following manner. 

(d) Update gate. The new cell state is calculated by taking into account the 
information we needed to forget and the new information we decided to include in the 
cells state. The equation for the update gate is given in the following manner. 

(e) Output state. The output state is a combination of the input that we need to 
include as well as the previous inputs that we need to forget. It is the addition operator 
which does the magic in this gate. 

(f) Output. The output is a combination of the output state as well as the candidate 
gate and produces the combined result to produce the output.  

As a result we obtain the hidden state through the LSTM network and have thus resolved 
the vanishing gradient problem. The problem of gradient explosion is solved through  
gradient clipping in which the gradient is clipped as soon as it reaches a certain 
threshold value. This technique has been found to perform well in practice. 

2.1.3.3 Encoder-Decoder Architecture with Attention 

The various tasks of NLP are currently being completed with the encoder-decoder 
architecture which is extremely popular for the tasks involving sequences. The main aim 
of this architecture is to encode the input embedded sequence into an encoded vector 
representation and then to decode this vector representation using a decoder architecture. 
The encoder decoder architecture had been first performed for the task of neural machine 
translation and had then been applied to perform carious other tasks including text 
summarization and various current state of the art models use the Encoder-Decoder 
architecture as the baseline model.  

The encoder is responsible for encompassing the sequential information of the source 
words and in turn creating a hidden representation of these input words which takes into 
account their dependence on the previous words. If a bidirectional encoder has been used, 
then the words encode information from both the directions namely forward and 
backward. The encoder can be mathematically described as follows : 

Let " , "  denote the lengths of the source and the target sentences. Then the words in the 
source sentence are embedded into a fixed size (K) representation using either pertained 
GloVE embeddings, Word2Vec embeddings or embeddings that can be learnt.  

Tx Ty
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Cand id ate Gate : C̃t = tanh(W (c)x(t) + U (c)h (t−1) + b(c))

Upd ate Gate : ot = σ (W (o)x(t) + U (o)h (t−1) + b(o))

Cell State : Ct = ft ∘ Ct−1 + it ∘ C̃t

Ou t pu t : h t = ot ∘ tanh(Ct)



The input (x) and the target sentences (y) are then given as : 

where each word is a K-dimensional word vector. 

Computing the forward state of the Bidirectional RNN : 

where : 

"  is the word embedding matrix and "  
are weight matrices. Where m is the word embedding dimensionality and n is the number 
of hidden units.  

The hidden state of the decoder is given as follows : 

where : 

"  is the word embedding matrix for the target language and the weight matrices are given 
by "  are weight matrices. Where 
m is the word embedding dimensionality and n is the number of hidden units. The initial 
hidden state "  is computed by " where " . 

The normal encoder decoder architecture though is a major breakthrough for the 
sequence to sequence tasks however it has one major problem that is the inclusion of all 
the hidden states into a single encoder representation. This shortcoming has been 
overcome through the use of the attention model [14] which allows the decoder to 
specifically attend to specific regions of the encoder output to produce a result at each  

Ē ∈ ℝm×kz ⃗W, ⃗Wz , ⃗Wr ∈ ℝn×m, ⃗U , ⃗Uz , ⃗Ur ∈ ℝn×n

E
W, Wz, Wr ∈ ℝn×m, U, Uz, Ur ∈ ℝn×n, C, Cz, Cr ∈ ℝn×2n

so so = tanh (Ws
⃗h 1), Ws ∈ ℝn×n
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x = (x1, …, xTx); xi ∈ ℝKx

y = (y1, …, yTy); yi ∈ ℝKy

⃗h i = {(1 − ⃗zi ) ⊙ ⃗h i−1 + ⃗zi ⊙ ⃗h i i f i > 0
0 i f i = 0

⃗h i = tanh ( ⃗WĒxi + ⃗U [ ⃗ri ⊙ ⃗h i−1 ])

⃗zi = σ ( ⃗Wz Ēxi + ⃗Uz
⃗h i−1 ])

⃗ri = σ ( ⃗Wr Ēxi + ⃗Ur
⃗h i−1 ])

si = (1 − zi) ⊙ si−1 + zi ⊙ s̃i

s̃i = tanh (WEyi−1 + U [ri ⊙ si−1] + Cci)
zi = σ (WzEyi−1 + Uzsi−1 + Czci)
ri = σ (WrEyi−1 + Ursi−1 + Crci)



 

 

time step. The architecture for the attention-based sequence model has been specified in 
Figure 5 and the calculation of the context vectors is described as follows : 

where 

and 

"  is the "  annotation in the source sentence and "  are 
the weight matrices.  

Though sequence to sequence models with attention were introduced for machine 
translation, they are widely being used for abstractive as well extractive text 
summarization and are therefore very important in today’s state of the deep learning era. 

h j jth Va ∈ ℝn′�, Wa ∈ ℝn×n, Ua ∈ ℝn′�×2n
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Figure 5 : Attention vectors to specific encoder outputs.

ci = ΣTx
j= 1αijh j

αij =
exp(eij)

ΣTx
K= 1 exp(eik)

eij = vT
a tanh (Wasi−1 + Uah j)



2.2 Task Definition 

2.2.1 Problem Formulation 

The task of text summarization can be formulated as a supervised learning problem : 
given a collection of training examples " , the goal is to learn a predictor "  
which takes a passage of text "  as inputs and gives the summarized passage "  as output.  

Where "  is the passage and the length of the passage being "  and 
"  is the output summary of length "  and " . Moreover, each word 
in the input and the output text are represented in the form of a fixed dimension 
embedding and the embedding can be either pre-trained or can be learnt during train time.  
The summary that is produced at the output may be extractive or abstractive depending 
on the problem formulation. 

2.2.2 Evaluation 

Evaluating the generated summary with respect to the reference summary is non trivial 
task and through great efforts an adequate means of assessing the performance of the 
summarization system has been developed. Moreover the task of evaluation of text 
summaries is even more challenging because it is very arbitrary for different individuals. 
A sentence seemingly important to one person may not sound very important to the other 
while both being correct in their own ways. The evaluation metrics that have been used 
developed to assess the generated summary are also improving with active research going 
on the area of development of new metrics. 

2.2.2.1 Recall and Precision 

Recall and precision are the two most commonly used metrics to compare the generated 
summary with the reference summary. Nenkova and McKeown have defined precision 
and recall as “Recall is the fraction of sentences chosen by the person that are also 
correctly identified by the system and precision is the fraction of system sentences that 
were correct” [15]. In other words, precision is the fraction of true positives over sum of 
true positives and false positives while recall is the fraction of true positives over the sum 
of true positives and false negatives. The F1 metric is the harmonic mean of precision and 
recall. The recall metric is considered to be slightly more preferable when the summary 
lengths are not equal because of the manner in which humans classify the importance of 
sentences. The F1 metric however which is the harmon mean of the two is mostly the 
preferred metric in case of contention between the selection of appropriate metric to 
evaluate the results. 

{(pi, ai)}n
i= 1 f

p a

p = (p1, p2, …, plp) lp
a = (a1, a2, …, ala) la la ≤ lp
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f : p → a



2.2.2.2 ROUGE 

The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a set of evaluation 
procedures that are able to automatically determine the quality of a generated summary in 
comparison to the reference summary where the reference summary is usually human 
annotated summary.  

The ROUGE metric includes multiple variants including ROUGE-N (n-gram recall), 
ROUGE-L (longest common subsequence), ROUGE-S (Skip-Bigram Co-Occurrence 
Statistics) and ROUGE-W (Weighted longest common subsequence). For each ROUGE-
N, there is calculation of the overlap between the generated summary and the system 
summary. For each ROUGE ngram result, there is precision, recall and F1 metric result in 
order to give researcher the flexibly of closing the most appropriate metric for evaluation. 

2.3 Datasets and Models 

2.3.1 CNN/Daily Mail Dataset 

The CNN/Daily Mail dataset as processed by Nallapati et al. (2016) [16] has been used 
for evaluating summarization. The dataset contains online news articles (781 tokens on 
average) paired with multi-sentence summaries (3.75 sentences or 56 tokens on average). 
The processed version contains 287,226 training pairs, 13,368 validation pairs and 11,490 
test pairs. Models are evaluated with full-length F1-scores of ROUGE-1, ROUGE-2, 
ROUGE-L, and METEOR (optional). This dataset is actively being used by the research 
community to solve the problem of text summarization in new and interesting ways.  

2.3.2 Pointer Generator Networks Model 

The Pointer Generator Networks [17] is a hybrid network that can choose to copy words 
from the source via pointing, while retaining the ability to generate words from the fixed 
vocabulary. It is one of the state of the art abstractive text summarization techniques. The 
posting mechanism improves the accuracy and handles the OOV words, while it also 
retains the ability to generate new words with the help of decoder over the output 
vocabulary. The network is a combination of extractive as well as abstractive 
summarization technique.  

The pointer generator model was able to overcome two widely persistent problems in the 
field of abstractive summarization : 

(a) Problem 1. Summaries sometimes produced factual inaccuracies. 

(b) Problem 2. The summaries sometimes repeat themselves. 
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See et al. worked to solve these two problems and by producing the pointer-generator 
network a solution for the first problem of factual inaccuracies. 

(a) Solution 1. Directly point to the source sentence rather than generating a word for 
that detail to maintain factual accuracy. The probability of generating or simply pointing 
can be defined in the following manner. 

�
Where : 
"  is the context vector calculated from the attention distribution "  as defined 
in section 2.1.3.3, "  and scalar "  are learnable parameters or the weight 
matrices, "  is the activation function, "  is the decoder state at timestep t and "  is the 
decoder input at timestep t. The probability of generation, "  can therefore be 
calculated through these parameters.  

This "  is used as a switch between generating a word from the vocabulary by sampling 
from "  or copying a word from the input sequence by sampling from the attention 
distribution " . Hence the probability distribution over the extended vocabulary which is 
the union of the vocabulary and all the words given in the source document is given by  
"  as described in the following equation. 

    "  

pg en = σ (WT
h *h *t + WT

s st + WT
x xt + bptr)

h *t = Σiat
i h i at

Wh *, Ws, Wx bptr
σ st xt

pg en ∈ [0,1]

pg en
Pvocab

at

Pw

P(w) = pg enPvocab(w) + (1 − pg en)Σi:wi= wat
i
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Figure 6: Pointer-generator model.



(b) Solution 2. Maintain a coverage vector to remember the sequence of words which 
have already arrived once in the summary and to reduce the probability of their repeated 
occurrence. The coverage vector is the sum all the attention distributions, which signifies 
the degree of coverage that those words have received from the attention mechanism so 
far and is given by the following equation : 

     "  
Where: 
"  is the coverage vector and "  is the attention distribution over each sentence at a single 
timestep.  

2.3.3 Implementation Details of Pointer Generator Network 

The pointer-generator network was implemented on both the CNN/Daily Mail dataset as 
well as our own dataset. The code originally implemented in Tensorflow version 1.0 has 
been trained on our own dataset after the suitable representation and preprocessing of the 
dataset. The dataset was first tokenized using the Stanford CoreNLP toolkit and then 
processed into .bin vocab files and the data was carefully chunked to meet the 
requirements for the dataset. The results obtained after training the pointer-generator 
network for 48hr on Nvidia TX2 server have been described as follows: 

ct = Σt−1
t′�= 0at′�

ct at
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Figure 7 : Decoded and reference summaries from the pointer-generator network.
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Figure 8 : Attention visualization on CNN/Daily Mail dataset.

Figure 9 : Attention visualization on our Dataset.



3. Speech Recognition 
Speech recognition is the process of giving machines the power to understand natural 
language, process it and then comprehend it to present the result in the form of a text. 
This field is an interdisciplinary field which is a subfield of computational linguistics that 
develops techniques to allow machines to process and translate speech into text. 

The task of multimodal summarization takes audio as one of the inputs from the dataset 
and it is therefore extremely necessary to process the audio in a form such that is is able 
to be matched with the synchronous text and and the correspond video keyframes. It is 
therefore necessary to extract the features from audio and then apply our recognition 
model to process it further more to achieve the required results. 

3.1 History 

3.1.1 Early Approaches 

The work on speech recognition has been going on since half a century now with Bell 
Labs researchers,  Stephen Balashek, R. Biddulph, and K. H. Davis building “Audrey” 
for single-speaker digit recognition in 1952 [18]. Though there was a lot of research on 
speech recognition and language understating in the following years but the major 
breakthrough came in the 1980s which saw the introduction of the n-gram language 
models. In the following years with the advancement in computing power, the speech 
recognition technology became more and more accurate. 

3.1.2 Mel-Frequency Cepstral Coefficients 

The mel-frequency cepstrum (MFC) is a representation of short-term power spectrum of 
sound and are very similar to the principle components of the log spectra. They are based 
on a linear cosine transform of a log power spectrum on a non linear mel scale of 
frequency. 

The mel-frequency cesptral coefficients (MFCC) are the coefficients that together make 
up the MFC. They are derived from a non-linear or cepstral representation of an audio 
clip. The MFCCs are more commonly viewed as features for speech recognition systems. 
The MFCCs imitate the natural features that a human recognizes while listening to sound. 
They are therefore inspired from human auditory track. 
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3.2 Hidden Markov Models 
The hidden Markov models are statistical models that take into account sequential input 
and output a sequence of symbols or quantities. They are widely used in speech 
recognition systems because speech can be visualized as a Markov model for many 
stochastic purposes.  

The HMMs are also extremely popular because they can be trained automatically and are 
simple and computationally feasible to use. The output for the HMMs is obtained by 
taking into account the output of various previous timesteps where the number of 
previous outputs that need to be taken is a parameter than can be tuned. The vector input 
to the HMMs consist of the MFCC features and the output is generated by taking a 
probability distribution over each phoneme in the output.  

3.3 End-to-End Speech Recognition 
Since 2014, end-to-end speech recognition models have become the stalwarts in speech 
recognition technology. They are the current state of the art approach to solve the given 
problem statement. They are extremely powerful because they jointly learn all the 
components of a speech recognizer. As a result we do need to specify to the model any 
specific features that we think to be important to produce results. The model on the other 
hand self-learns the features it deems to be important through the provided data.  

One of the major breakthroughs came with the “Listen, Attend and Spell” model [19] 
which applied the attention model used by Bahdanau et al. [14] for neural machine 
translation. The model has been described as follows : 

3.3.1 Task Definition 

Let "  be the input sequence of filter bank spectra features (MFCCs) 
and "  be the output sequence, a probability distribution over the output 
vocabulary.  The task of the model is defined as  the generation of probability of output "  
using the the outputs of the previous timesteps "  and the input signal "  for that 
timestep. It is formally defined as : 

     "  

3.3.2 Listen, Attend and Spell 

This model was described in 2016 by Chan et al. [19] and is one of the state of the art 
models for end-to-end speech recognition task. It identifies the features for input audio 
signal on its own and selectively pays attention to those features using attention model. 

x = (x1, x2, …, xT )
x = (y1, y2, …, yS)

yi
y< i xi

P(y |x) = ΠiP(yi |x, y< i)
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The LAS model is based on the Encoder-Decoder architecture with attention. The 
Listener acts as the Encoder which is a pyramidal BiLSTM encoding of the input 
sequence x into higher dimensional features h, the speller is an attention-based decoder 
which generates the y characters from h. The result is obtained by producing a probability 
distribution over the output vocabulary and the experimental analysis of the LAS model 
has proven that it outperformed the state of the art models existing at that time including 
the HMM model for speech recognition. 

As a result, model for multimodal summarization has been inspired from the LAS model 
and uses similar encoder structure to generate sequential encoding of input features. 
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Figure 10 : Listen, Attend and Spell (LAS) model. 



4. Video Recognition 
The third and the final task in order to achieve multimodal summarization the task of 
image recognition. This involves understanding the contents of an image and then 
relating them to the natural language. One of the most challenging tasks of computer 
vision is to recognize the images and perform tasks such as event detection, scene 
reconstruction, 3D pose restoration, image captioning and visual question answering. 
This is being extensively used today for self-driving cars and other autonomous vehicles 
like autonomous agricultural vehicles on Earth and autonomous Mars rovers. 

The task of video recognition can be broken down into the task of identification of 
keyframe images and then applying the widely available image recognition algorithms to 
process and recognize the images. Therefore if we have a robust image recognition 
algorithm, we can extend it to video recognition as well.  

4.1 History 

4.1.1 Early Approaches 

The task of video recognition as explained previously can be broken down to the task of 
image recognition which can further be broken down to solve the problem of pattern 
recognition. Images can be considered as patterns and can therefore be included in the 
main task of pattern recognition. The main task is to identify the particular patterns in 
images. The field of pattern recognition has been evolving for quite few decades with 
many sequence labeling algorithms as well as machine learning algorithms being applied 
for the same. 

4.1.2 Machine Learning Approaches 

The task of image recognition and classification has received major breakthrough with 
the application of various classification tasks being applied for images. The task of image 
classification can be solved through the state of the art machine learning models which 
allows more accurate results on the given dataset. One of the most popular classification 
techniques which have been applied for image classification are support vector 
machines.  

Support Vector Machines (SVMs) are among the best supervised learning algorithms. 
They take into exhaustive consideration of vector representation of the training examples 
and divide the linearly separable labels with the help of margin and the greater the 
margin, the more accurate prediction there can be. Though they are defined for linearly 
separable classifiers, they are extended to non-linearly separable classifiers with the help 
of Kernels, which make the SVMs work like a charm for non-linearly separable data.  
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A single decision rule is defined which decides the class of label based on the decision 
rule. The decision rule is the median line of the gutter, which is defined as the vectors 
lying on the margins of the two types of labels. The width is defined as the width of the 
street.  
The basic intuition of SVMs as stated earlier is that the greater the width of the street, the 
greater the accuracy of prediction. Hence the task is to maximize the width under a given 
set of constraints. This is beautifully accounted by the Lagrange’s multipliers. 

(a) Decision Rule. "  for positive examples 

(b) Function.  "  

(c) Constraint.  "  

where : 
"  and "  for positive and negative examples respectively. 
"  is the input data in vector space. 
"  is the vector perpendicular to the median line of the margin. 
b is a positive constant. 

Using Lagrange’s Multipliers, 

   " , 

Differentiating to find the extremums, it can be proved that the decision rule depends 
only on the dot product of the unknown "  and the sample vectors " . 
Hence the decision rule becomes, 

"  then it will belong to positive class else the unknown will belong to 

the negative class. 

(d) SVM Optimization Problem. 

   "  

where, "  is the tradeoff between increasing the margin-size and ensuring that "  lies on 
the correct side of the margin. 

The SVM approach was able to achieve an accuracy of 97% for the task of hand digit 
recognition on the MNIST dataset and has therefore been a major state of the art 
approach in the field of image recognition. 

⃗w . ⃗u + b ≥ 0
1
2 | | ⃗w | |2

yi( ⃗xi . ⃗w + b) − 1
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m

∑
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4.2 Convolutional Neural Networks 
ConvNets are deep, feedforward neural networks which are much easier to train and can 
be generalized much better than fully connected adjacent layers. They are widely used by 
the computer vision community to identify the various features in an image. 

The ConvNets are designed to process data that comes in the form of multiple arrays. The 
architecture of ConvNets is a sequence of convolutional layers interspersed with 
activation functions and includes other layer including pooling layer, max-pooling layer 
and fully connected layer. 

The convolutional layer essentially convolves (slides) over all the spatial locations in an 
image to carefully scrutinize the local features of images. A filter of appropriate size is 
selected and is maneuvered through the image with a specific stride.  

The Pooling layer is responsible for making the image representation smaller and more 
manageable. It operates over each activation map independently. The pooling layer only 
reduces the spatial dimensions of the image and does not affect the depth of the image. 
Downsampling is an intermediate step involved to achieve pooling. 

The maxpooling layer is used to achieve pooling. We take a filter of a fixed size and slide 
it over the entire image to take the max value of neuron in each filter area. The strides are 
designed to avoid overlap. Typically zero padding is not used. Finally the fully connected 
layer contains the entire network connecting input to produce the required output. 
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Figure 11 : A typical CNN architecture. The outputs from each layer of a typical  
convolutional neural network applied to Samoyed dog where each rectangular image is 
a feature map.



4.3 Show, Attend and Tell 
Inspired by the work in machine translation and object detection, Xu et al. [20] 
introduced an attention based model that automatically learnt describe the contents of the 
image. Through the task of image captioning, Xu et al. ventured into the task of scene 
understating.  

In order to understand the images, they also generated an encoder-decoder model with 
attention on particular parts of the images. The model essentially encoded the image 
using a convolutional neural network to extract the features and then applied an RNN 
layer over these extracted features by using an attention based decoder which selectively 
paid attention to important parts of the images to produce the output summary. The 
process has been shown in Figure 12. The decoder of the model is composed of LSTM 
cells which generate one word at every timestep conditioned on a context vector, the 
previous hidden state and the previously generated word.  

5. Baseline Multimodal Summarization 
The task of multimodal summarization as described previously encompasses the tasks 
previously described of text summarization, speech recognition and video recognition. 
The increase in the volume of multimedia-data has made it difficult for the users to 
extract meaningful content from the vast amount of data. This is where the task of 
multimodal summarization comes into picture. It is able to collect the multitude of 
multimedia data and then present a succinct summary out of it which shall allow the users 
to understand the context of the data with much ease and give a relatively better 
perspective of the data.  

�26

Figure 12 : The Show, Attend and Tell image captioning model.



5.1 History 

5.1.1 Early Approaches 

The task of MMS has been applied in the fields of meeting record summarization, sport 
video summarization, movie summarization and social media summarization.  These all 
tasks have the availability of multimedia data and therefore it is a reasonable assumption 
that the benefit of application of the various MMS techniques in these areas will have the 
maximum impact. Meeting record summarization has been performed by Erol et al. [21], 
Gross et al. [22], sports video summarization has been performed by Tjondronegoro et al. 
[23], movie summarization has been performed by Mademlis et al. [24] and social media 
summarization has been performed by Shah et al. [25]. Though a lot of work has been 
performed in this field, the work that has been performed does not necessarily take into 
account all the modalities of data as well as do not apply the state of the art deep learning 
approaches. Moreover, the task that they deal with are the tasks of synchronous data 
summarization however one of the baseline models that is explained in the models secant 
involves the multimodal summarization of the asynchronous data. 

5.2 Task Definition 

5.2.1 Problem Formulation 

The input is a collection of Multimodal data "  related 
to a dataset were the each document "  may or may not consist of an image 
along with the text in the document. "  denotes the video and "  denotes the cardinality 
of the set. The objective of multimodal summarization is to automatically generate textual 
sugary to represent the principle content of " .  

5.2.2 Evaluation Metric 

Since the multimodal summarization model produces a textual summary of the 
multimedia data, the same evaluation metrics namely, precision, recall and F1 scores can 
be used and most importantly the ROUGE scores can be used for the evaluation of the 
generated textual summary. This is able to measure the summary quality by matching the 
n-grams between the generated summary and the reference summary in the ROUGE-N 
evaluation metric. 

Apart from the ROUGE scores which are essential for the evaluation of the generated 
textual summaries with respect to the reference summaries, researchers in the multimodal 
community have also introduced various metrics to evaluate the multimodal summaries. 
These summaries take into account the influence factor through the other media of data. 
These evaluation metric have been defined as follows : 

. = {D1, …, D|D|}, {V1, …, V|V|}
D = {Ti, Ii}

Vi | ∘ |

.
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(a) Content F1. Libovicky et al. [26] introduced the Content F1 evaluation metric 
which recognized the fact that the task of summarization was being carried out over the 
HOW2 dataset and there were certain words which occurred at the start of almost all the 
videos. These words were also present in the reference summary hence they increase the 
ROUGE score even when the model does not completely understand the data. This was 
prevented by post processing the data to remove these frequently occurring words from 
the dataset and then calculate the F1 score. This metric was then named as Content F1. 

(b) Multimodal Automatic Evaluation (MMAE). This metric is used for the models 
which produce pictorial summary along with textual summary. Hence this becomes self 
in models having multimodal output for multimodal input data. The was introduced by 
Zhu et al. [27] and considered three aspects: salience of text, salience of image and 
relevance between text and image.  

5.3 Dataset and Models 

5.3.1 MSMO Dataset 

Zhu et al. [27] collected a multimodal dataset similar to Hermann at al. [28]. They 
collected their large-scale multimodal dataset from Daily Mail website and annotated the 
pictorial summaries.  

5.3.2 How2 Dataset 

How2 is a large scale dataset for multimodal language understating [29]. The How2 
dataset contains 79,114 instructional videos with English subtitles. The corpus can be 
recreated using the scripts and the metadata available at https://github.com/srvk/how2-
dataset. The dataset has been collected from the YouTube instructional videos and the 
descriptions and the subtitles are taken as ground truth made available by the video 
creators. 
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Figure 13 : How2 dataset with utterance-level English subtitle with Portuguese 
translation and the reference summary available in the form of abstract.

https://github.com/srvk/how2-dataset
https://github.com/srvk/how2-dataset


5.3.3 Extractive Asynchronous Multimodal Summarization 

Li et al. [30] proposed a modern technique for extractive multimodal summarization for 
asynchronous collection of text, image, video and audio. The baseline experiments had 
been performed on their custom dataset which included asynchronous data. However, 
their work was extended in this project and evaluated on the synchronous dataset. In their 
paper, they proposed an approach to a generate textual summary from a set of 
asynchronous documents, images, audios and videos on the same topic. Since multimedia 
data are heterogeneous and contain more complex information than pure text does, MMS 
faces a great challenge in addressing the semantic gap between different modalities. The 
framework of their method is shown in Figure 14. For the audio information contained in 
videos, speech transcriptions is obtained through Automatic Speech Recognition (ASR) 
and designed a method to use these transcriptions selectively. For visual information, 
including the key-frames extracted from videos and the images that appear in documents, 
the joint representations of texts and images is learnt by using a neural network; then the 
text that is relevant to the image is identified. In this way, audio and visual information 
can be integrated into a textual summary. The model proposed by Li et al. has the 
following features : 

(a) Readability Guidance Strategies. The basic premise of this strategy is that if 
there is a sentence in the document which is related to the audio, then the text in the 
document would be preferred rather than the sentence obtained after the automatic speech 
recognition. The similarity is obtained with the help of cosine similarity and a threshold 
is used to determine is the sentences are appropriately similar. 

(b) Audio Guidance Strategies. For each adjacent speech transcription pairs, if 
audio score is smaller than a certain threshold value then the speech transcription should 
recommend the document text and the document text should not recommend speech 
transcription.  

(c) Text-Image Matching. The main idea of text image matching is that semantic 
analysis is performed between text and image to learn the joint representation for textual 
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Figure 14 : The framework for Asynchronous MMS Model



and visual modalities by using a model trained on Flickr 30K dataset. The framework 
model by Wang et al. [31] is used to achieve the state of the art performance for text-
image matching task on the Flickr 30K dataset. 

(d) Budgeted optimization of submodular functions.  

Where : 
T is the set of sentences, S is the summary, "  is the length (number of words) of sentence 
s, L is the maximum length of the summary and F(S) is the summary score.  

(e) Salience of text.  

Where : 
"  is the damping factor that is usually set at 0.85, N is the total number of text units, "  
is the relationship between the text unit "  and "  which is computed as follows : 

"  
The text unit "  is represented by averaging the embeddings in "  and "  denotes the 
similarity between the two texts. 

(f) Objective function. The objective function considers all the modalities and is 
mathematically defines as follows : 

Where: 
"  is the summary score obtained by text salience, "  is the summary score obtained by 
image salience. This is a monotone submodular function and a greedy algorithm can be 
applied to obtain the optimum value for this function and the argument sentences for this 
value is generated multimodal summary. 

5.3.3.1 Implementation Details 

The entire algorithm has been implemented on our own dataset to evaluate the accuracy 
of the generated summary on the self generated dataset. The OpenCV framework has 
been used to extract salient key-frames from the videos and the these key-frames are then 
matched with the speech transcriptions and the document text. The similarity matrix has 
been produced by incorporating specific changes in the code for the LexRank algorithm. 
The submodular function has been optimized using the greedy algorithm described by 
Lin et al. [32]. The for the implementation of the paper on the our own dataset are as 
follows: 

ls

μ Mji
ti tj
Mji = sim(tj, ti)

ti ti sim( ∘ )

Ms Mc
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s∈S

ls ≤ L}

Sa(ti) = μΣjSa(tj) . Mji + 1 − μ
N

Fm(S) = 1
Ms

Σti∈SSa(ti) + 1
Mc

Σpi∈SIm(pi)bi − λm

|S|
Σti,tj∈Ssim(ti, tj)
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Figure 15 : List of generated summaries.

Figure 16 : Source transcript in the dataset
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Figure 17 : Generated summary from the source data.

Figure 18 : ROUGE score evaluation of the generated summary.



5.3.4 Multimodal Summarization with Multimodal Output 

Multimodal Summarization with Multimodal Output (MSMO) [27] is a novel multimodal 
summarization task, which takes the news from the defined dataset with images as input, 
and finally outputs a pictorial summary. They constructed a large scale corpus for MSMO 
study. They proposed an abstractive multimodal summarization model to jointly generate 
summary and the most relevant image. They proposed a multimodal automatic evaluation 
(MMAE) method which has been described in section 5.3.1. The text encoder and the 
summary decoder have been inspired from the Pointer-Generator networks.  

Multimodal attention layer has been placed on top of the textual and visual attention 
layer. This layer acts as a distribution between the text visual features of the data hence 
this layer is built on top of the previous attention layer which specifies the attention 
required to be given to specific words and images. The second level of attention layer is 
required to weigh the importance that needs to be give to the visual and textual features 
all together. Hence this hierarchal attention model is able to generate an output 
multimodal summary which performs well on their dataset and they were able to prove 
good results using the MMAE metric. The architect of the MSMO model has been 
described in figure 19. The model can further be described using the mathematical 
equations built on top of the pointer-generator model as described in section 2.3.2 as : 
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Figure 19 : Architecture for the MSMO model
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txtct
txt + αt

img ct
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Where: 
"  is the attention weight for the text context vector and "  is the attention weight for 
the image context vector. These two distributions are combined with the context vectors 
of the text and the image respectively to produce the combined multimodal context 
vector. This is passed to the decoder which then generates a probability distribution over 
the output vocabulary and output images to select the most accurate word and image at 
each timestep and in turn produce a good multimodal output summary. 

5.3.4.1 Implementation Details 

The MSMO model has been built on top of the pointer-generator network and hence most 
of the code has been reused from the pointer generator network and this too has been 
coded using the Tensorflow framework in version 1.0. The authors were kind enough to 
share the code with me for my research purpose and I implemented the code on our 
dataset to get the ROUGE score results for the same. The training step of the code in 
NVIDIA TX2 has been shown in figure 20. 
 

α t
txt αt

img
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Figure 20 : Training of the MSMO model on our dataset.
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Figure 21 : Architecture for MMBiDAF model.



6. MultiModal BiDirectional Attention Flow 

The MMBiDAF model (figure 21) is the proposed model for carrying out the defined task 
of multimodal summarization which has been inspired from the various previous state of 
the art models existing in the literature. This model was chosen since it encompasses all 
the input modalities, calculates the similarity between them and then uses a multimodal 
attention later on top of image-aware and audio-aware texts to get an output distribution 
over the source document. 

The model is used for extractive summarization in which at each timestep the most 
probable sentences are selected and chosen as part of the output summary. The summary 
terminates when the probability of a special <End Of Summary> token is the greatest.  
The proposed model is inherently a combination of Bidirectional Attention Flow [33] and 
Multimodal Attention models [34]. Our model follows the high-level structure of 
embedding layer, encoder layer, bidirectional attention layer, modality aware sequence 
modeling layer, multimodal attention layer and finally an output layer.  The model is 
explained in complete detail in the following sections. 

6.1 Model Explanation 

6.1.1 Text Embedding Layer 

Let the input document be described as "  where "  is the embedded 
sentence obtained by averaging the pertained GloVE embeddings of the words included 
in the sentence. ’T’ is the number of sentences in the source document. Hence each 
sentence is now described as a vector with dimension equal to the embedding dimension 
(D). Hence " .  

In order to further refine the generated embeddings, the embedded sentences are 
undergone through the following steps : 

• Each Embedding is projected to have the dimensionality H. By making "  
a learnable parameter, each embedding vector "  is mapped to " . 

• A Highway Network [35] is applied to refine the embedded representation. Given an 
input vector " , one-layer highway network computes  

     "  
     "  
     "  
Where: 
"  and "  are learnable parameters. The hidden vectors are 
therefore transformed using this Highway Network and this transformation. 

(X1, X2, …, XT ) Xi

Xi ∈ ℝD ∀i

Wproj ∈ ℝH×D

Xi h i = Wproj Xi ∈ ℝH

h i
g = σ (Wg h i + bg ) ∈ ℝH

t = ReLU(Wth i + bt) ∈ ℝH

h ′�i = g ⊙ t + (1 − g ) ⊙ h i ∈ ℝH

Wg , Wt ∈ ℝH×H bg , bt ∈ ℝH
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6.1.2 Audio Embedding Layer 

The audio embedding layer is basically the feature extraction layer input audio signals. 
The MFCC features of the input audio signals are extracted to generate audio envelopes 
of embedded dimension. The input audio signal is therefore obtained on parts where each 
part signifies a frequency envelop which have been extracted using the MFCC algorithm. 
The audio signal is therefore obtained in form of "  where A is the number 
of envelopes and each "  where "  is the embedding dimension for the generated 
discrete audio signals.  

In order to further refine the audio embeddings, the audio embeddings are passed through 
the same two steps of projection and Highway Network to refine the generated audio 
embeddings. After passing the audio embeddings through these steps, we obtain the 
embedded audios in the dimension equal to the dimension of the hidden state. Hence we 
now get the audio embeddings as " . 

6.1.3 Image Embedding Layer 

The third and the last input modality is the video in the dataset. The videos are first 
preprocessed to extract the key-frames from the video. The extraction of salient frames is 
an ongoing are of research and we have used a naive OpenCV key-frame extraction 
algorithm based on the change in the histograms of the adjacent frames. 

The obtained images may be of different sizes and they are therefor first normalized and 
to obtain images of equal dimension. Hence the video is now available in the form of 
key-frame images where each image is of the form given by "  where 
"  where "  is the normalized image size.  

The obtained images are then embedded using the ResNet [36] network which extracts 
the features from the input images to make them of suitable dimension. A linear layer is 
then passed through the obtained embedded images to represent every image with fixed 
size dimension. 

In order to further refine the image embeddings, the image embeddings like the audio and 
the text embeddings are passed through the same two steps of projection and Highway 
Network to refine the generated image embeddings. After passing the image embeddings 
through these steps, we obtain the embedded images in the dimension equal to the 
dimension of the hidden state. Hence we now get the image embeddings as 
" . 

(Y1, Y2, …, YA)
Yi ∈ ℝD1 D1

Yi ∈ ℝH ∀i

(Z1, Z2, …, ZI)
Zi ∈ ℝd2×d2 ∀i d2

Zi ∈ ℝH ∀i
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6.1.4 Encoder Layer 

The generated text, audio and image embeddings are fed into the encoder layer which is 
composed of a Bidirectional LSTM network. This layer is responsible for incorporating 
temporal dependencies between the generated embeddings. The embeddings are therefore 
transformed into sequential encodings for all the three types of modalities of data. The 
encoded output is the LSTM’s hidden state at each timestep : 

    "  
    "  
    "  

The output from the Encoder layer is therefore of dimension 2H which is twice the 
hidden size of the network. 

6.1.5 Attention Flow Layer 

The attention flow layer is responsible for generating image-aware textual vectors and 
audio-aware textual vectors. This intuitively signifies that the text is now aware of the 
correspond audio and image dataset after it passes through this layer.  

These are computed using the similarity matrix which is a trainable matrix between the 
separate modalities. The similarity between each textual sentence and all the audio 
vectors as well as the similarity between each textual sentence and every image is 
calculated.  

This similarity matrix is then used to calculate attention weights each textual sentence 
shall give to the different modality. 

The 2H dimensional images and text shall be passed through the similarity matrix whose 
dimension shall be "  where T is the number of text sentences and I is the number 
of key-frame images. The similarity matrix shall be computed as : 

    "  

where "  represents the column vector of the H matrix which is the sentence embedding 
matrix and similarly "  represents the column vector of U matrix which is the embedding 
matrix for each image. Hence "  and " .  

Similarly the encoded text and audio are then passed through the another similarity 
matrix which calculates the similarity between the encoded text and the encoded audio. 

h ′�i, f wd = LSTM(h ′�i−1, h i) ∈ ℝH

h ′�i,rev = LSTM(h ′�i+ 1, h i) ∈ ℝH

h ′�i = [h ′�i, f wd; h ′�i,rev] ∈ ℝ2H

S ∈ ℝT×I

S = α(H:t, U:i) ∈ ℝ

H:t
U:i

H ∈ ℝ2H×T U ∈ ℝ2H×I
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The trainable similarity function needs to be calculated and is defined as 
" . These values are calculated each pair (h, u) in the similarity 
matrix where "  

6.1.5.1 Text-to-Image Attention 

The attention weights over all the key-frame images in the given dataset can then be 
calculated as " . The text-to-image attention signifies which 
images are most relevant to each sentence. Hence "  is a probability distribution over the 
complete set of images. 

Now the attended image vectors for the entire text will be "  which signifies 
that for every sentence the attention given to each image has been incorporated. Hence 
the text that we now have is attentive to the images and knows which image it needs to 
pay attention to. This is calculated using the following equation : 

     "  
Where: 
"  are the text vectors which are aware of the corresponding image. 

6.1.5.2 Image-to-Text Attention 

This signifies which of the sentences has the closest similarity to each keyframe image. 
For every image, the similarity score over all the sentences is calculated to understand 
which of the sentences are the closest to the given keyframe.  

The attention weights are obtained using "  which tells the 
probability distribution of all the sentences over the given image. 

The context vector for the images can then be calculated using : 

     "  

This indicates the image to text attention output. For each sentence, " , we 
obtain the output "  of the Bidirectional Attention Flow layer by combing text hidden 
state " , the Text-to-Image attention output " , the image-to-text attention "  : 

    "  

where "  is the element wise multiplication. 

α(h , u ) = wT
sim[h ; u ; h ⊙ u ]

wsim ∈ ℝ6H

at = sof t ma x(St:) ∈ ℝI

at

Ũ ∈ ℝ2H×T

Ũ:t = ΣjatjU:j ∈ ℝ2H

Ũ ∈ ℝ2H×T

bt = sof t ma x(ma xcolS) ∈ ℝT

h̃ = ΣtbtH:t ∈ ℝ2H

i ∈ 1,…, T
g i

Xi Ũ:i h̃

g i = [Xi; Ũi; Xi ⊙ Ũi; h̃ ] ∈ ℝ8H ∀i ∈ {1,…, T}

⊙
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6.1.6 Modality Aware Sequence Modeling Layer 

The modality aware sequence modeling layer is responsible for refining the sequence of 
vectors after the attention layer. The audio-aware-text and the image-aware-text become 
sequentially encoded after passing through this layer. Similar to the encoder layer, a 
bidirectional LSTM is used. The input vector for this layer is the output from the 
attention layer, " , the modeling layer computes  

    "  
    "  
    "  

We use a two-layer LSTM in the modeling layer rather than a single layer LSTM as in the 
Encoder Layer.  

6.1.7 Multimodal Attention Layer 

This attention layers is built on top of the modality aware aware sequential modeling 
layer to selectively weigh the appropriate amount of attention required to be given to each 
type of modality in order to generate the output from the source sentences at that 
particular timestep. For each timestep attention is calculated internally over image-aware 
as well as audio-aware text. In the same timestep multimodal attention is then calculated 
over generated context vectors after the internal attention calculation. This is the 
multimodal attention distribution and the multimodal context vector is then calculated. 
The attention weights over audio-aware text is "  and attention weights over 
image-aware text is "  where T is the maximum text length. The context vector 
over audio-aware text is given by "  and the context vector over the image-
aware text is given by " . The multimodal attention distribution over the audio 
aware texts is a scalar and the multimodal attention distribution over the image-aware 
text is also a scalar. Finally the multimodal context vector given by "  is the 
generated output for this layer. The equations can be described in the same manner as in 
[27] and are given as follows : 

g i ∈ ℝ8H

mi, f wd = LSTM(mi−1, g i) ∈ ℝH

mi,rev = LSTM(mi+ 1, g i) ∈ ℝH

mi = [mi, f wd; mi,rev] ∈ ℝ2H

αau dio ∈ ℝT

αimag e ∈ ℝT

cau dio ∈ ℝ2H

cimg ∈ ℝ2H

cmm ∈ ℝ2H
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6.1.8 Output Layer 

The output layer takes as input the multimodal context vector produced by the 
Multimodal Attention layer, " . This is then fed into a GRU cell which acts as a 
sequential layer before generating the final output to give a sequential encoding over the 
final output distribution. A softmax function is then applied over a fully connected linear 
layer over the output distribution. This gives us the probability of selecting each sentence 
at each timestep and the sentence with the maximum probability is chosen at that 
timestep. This can be quantified as follows : 

    "  
    "  
    "  
    "  
Where: 
"  is the output vector at timestep t, "  are respectively the audio aware text and the 
image aware text at timestep t. "  is the multimodal context vector at timestep t. At 
every timestep the GRU cell receives the previous hidden state and the current output 
from the previous layers as its input and then it converts it into a temporal encoding 
which is important for sequence dependent output like the textual summary. It is also 
necessary to take linear transform using the trainable weight matrices "  and 
"  where T is the maximum length of the input text vectors.  

Finally the softmax layer produces an output distribution over the source sentences in the 
document and at each timestep a probability distribution over the source sentences is 
calculated and the sentence with the maximum probability at a given timestep is selected 
to be a part of the output summar and trained using negative log probability of the 
target. The output summary is therefore generated from the given input multimodal data. 

6.2 Multimodal Dataset 
Resources of the corpus were driven from online courses provided by Coursera using 
coursera-dl, a python script to download course materials available on Coursera. Every 
lecture is accompanied by following resources : Videos (mp4), transcripts (txt), timed 
transcripts (srt), lecture notes (pdf, ppt). Out of 3000 courses, 25 courses were selected 
with a total of 965 videos and corresponding transcripts. Each directory contains 5 folders 
with each directory representing a course. The course contains several video lectures and 
the corresponding transcripts. The Audios have been extracted from the videos using the 
ffmpeg scripts. The audio-features are the Mel-frequency cepstral coefficients (MFCC) 
features which take human perception sensitivity with respect to frequency into 
consideration. These have been extracted for speech feature recognition. The Srt folder  

cmm

ot = [yt; zt; cmmt]
ot = Woot
ot, h t = GRU(ot, h t−1)
ot = sof t ma x(Wf ot)

ot yt, zt
cmmt

Wo ∈ ℝ6H×2H

Wf ∈ ℝ2H×T
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contains the timed transcripts of each video and used for specific transcript for video 
frames. The directory structure of the dataset is shown in figure 22. 

6.3 Evaluation Metric 
Since the task that we are pursuing involves the generation of multimodal summary in a 
textual form, it is convenient to use the widely accepted ROUGE scores for determining 
the accuracy of the generated output summary with respect to the self annotated reference 
summary. Hence for this task, we have used the ROUGE as described in section 2.2.2. 

6.4 Implementation Details 
The complete model has been implemented using PyTorch machine learning framework 
in python 3.0 programming language. The Rouge library has been used to evaluate the 
Rouge scores. The pre-trained GloVE vectors have been used and the text embedding 
size is 300 features while the audio embedding size is 128 features and the image 
embedding size is of 2048 features. The hidden size is taken to be 100 while dropout is 
applied to counter the problem of overfitting and the dropout probability is taken to be 
0.2. The maximum text length has been identified from the dataset and has been found 
out to be of size 405. The number of epochs have been set to 100. Seaborn library has 
been used to obtain the heat map to visualize the multimodal attention distribution. NLTK 
library has been used for sentence and word tokenization. 

The complete dataset has been preprocessed to remove the stopwords and the extra words 
in the course transcripts for instance the occurrence of the word ‘[MUSIC]’ in the source 
transcript has been removed while preprocessing the data. The gensim library has been 
used to extract the pertained GloVE vectors for the source words and the average of these 
embedded words is calculated to produce a sentence embedding. The PyTorch Data 
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Figure 22 : Directory structure of the multimodal dataset



loader has been used to automatically load data in batches and hence adding an extra 
dimension of batch size while taking input from data. The key-frames have been 
extracted as described earlier using OpenCV library.  

The complete code will be open sourced at https://github.com/amankhullar/MMBiDAF. 
The complete training has been performed on the NVIDIA RTX 2080 Ti server and the 
results have been possible because of the availability of this computation power.  

6.5 Results 
The MMBiDAF model has found to beat the current state of the art models by achieving 
an ROUGE-f score of 49.9% which is better than the current state of the art models by 
3%. The ROUGE-1 and ROUGE-f score of the various algorithms over the dataset have 
been compared in table 1. 
 

Through the results we have found that the MMBiDAF model achieves state of the art 
results for the task of extractive multimodal summarization. 

The results on the dataset to generate the textual summary are as follows : 

Models ROUGE
1 L

LexRank 44 37

Pointer-generator + coverage 39.53 36.38

Multimodal Summarization for 
Asynchronous Data

44.6 45

MSMO 40.86 37.74

MMBiDAF 49.99 50

�44

Table 1 : Results for the MMBiDAF model in comparison to other state of the art 
models.

https://github.com/amankhullar/MMBiDAF
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Figure 23 : Source transcript.

Figure 24 : One of the key frames extracted from the video.
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Figure 25 : Generated summaries of the first four videos.

Figure 26 : Attention visualization for first video.
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Figure 27 and 28 : Attention distribution over the various sentences in the course 
videos.



The results have been obtained by using the Negative Log Likelihood. The loss is 
therefore given by  

    "  
Where : 
"  is the reference target sentence. This is inspired from the choice of the pointer-
generator function and has proven to obtain good results.  

Backpropagation algorithm is then applied to train the learnable parameters and get the 
result.  

losst = − log P(si*)

(si*)
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Chapter III 
Conclusion and Beyond



7. Conclusion 
This thesis tackles the problem of multimodal summarization which is defined as the task 
of generating output summary taking into account the different multimedia data as input. 
The output summary may be presented in single modality or multiple modalities and this 
work presents the output in the form of textual modality. 

In the thesis, the foundations of natural language processing in general and multimodal 
summarization in specific have been explored. Since the field of Multimodal 
Summarization encompasses the textual, audio and visual dataset, the foundations of 
these modalities have been explored and further built upon. The breakthrough models in 
the field of deep learning namely listen, attend and tell and show, attend and tell have also 
been described through which our model has been inspired. The explanation of these 
models has been listed in order to give the user a better understanding of the existing state 
of the art deep learning approaches. The baseline models have been implemented on our 
own dataset and the widely available dataset to explore the existent state of the art 
techniques. The datasets have been carefully preprocessed and chunked to suit the 
baseline model specifications. 

The last part of this thesis presents the novel work of this thesis, the MultiModal 
Bidirectional Attention Flow Model (MMBiDAF). The architecture of the model has 
been carefully built to integrate all the modalities and draw similarity between them to 
carefully generate the text which is attentive of both image and audio which further 
receives an attention layer to select from the audio-aware or the image-aware text. The 
model is then able to generate a summary by extracting the most important sentences 
from the given source text. The results of the model have shown to outperform the 
existing state of the art models in the literature. MMBiDAF is compared with Lex Rank, 
pointer generator model, asynchronous summarization model and the MSMO model and 
it has been observed that MMBiDAF achieves a ROUGE-1 score of 49.9% and 
ROUGE-L score of 50.0%. 
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8. Beyond  
Though MMBiDAF model beats the existing state of the art models in the field of 
extractive multimodal summarization, however there are a large number of areas where 
the proposed model can be modified and improved upon. 

First of all, a new state of the art technique for NLP-training called Bidirectional Encoder 
Representation from Transformers (BERT) [37] can be applied which allows the model 
to be be built upon the existing pre-trained contextual representations. This gives NLP 
models the power to learn the context of the word occurring in the sentence. This is 
important for words like ‘bank’ which have completely different meaning when being 
used to describe river bank and when being used to describe the financial institution.  

Secondly, the described work includes a vanilla approach for extracting the key-frame 
images however with the advancements in the techniques to extract the keyframe images 
from a given video. 

Lastly, another interesting domain to build upon would be the same high-dimensional 
embedding space of the text, audio and video representation. The proposed work is able 
to perform well because the wearable weight matrix is able to learn the differences in the 
embedding space however other techniques for representing the modalities in a joint 
embedding space can be tried upon. This can be facilitated by including beam search at 
every timestep to extract a set of best sentences rather than a single sentence from the 
output distributions at each timestep. 
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10. Appendix A 
Code for models.py 

import numpy as np 
import torch 
from layers.encoding import * 
from layers.attention import * 
import torch.nn as nn 

class MMBiDAF(nn.Module): 
    """ 
    The combination of the Bidirectional Attention Flow model and the Multimodal 
Attention Layer model. 

    Follows a high-level structure inspired from the BiDAF implementation by Chris 
Chute. 

        - Embedding layer : Embed the text, audio and the video into suitable embeddings 
using Glove, MFCC and VGG respectively. 
        - Encoder layer : Encode the embedded sequence. 
        - Attention Flow layer : Apply the bidirectional attention mechanism for the 
multimodal data. 
        - Modality aware encoding : Encode the modality aware sequence 
        - Multimodal Attention : Apply the attention mechanism for the separate modality of 
data. 
        - Ouput layer : Simple Softmax layer to generate the probability distribution over the 
textual data for extractive summary. 
     
    Args: 
        word_vectors (torch.Tensor) : Pre-trained word vectors (GLoVE). 
        image_vectors (torch.Tensor) : Pre-trained image features (ResNet). 
        audio_vectors (torch.Tensor) : Pre-trained audio features (MFCC). 
        hidden_size (int) : Number of features in the hidden state at each layer. 
        drop_prob (float) : Dropout probability. 
    """ 

    def __init__(self, hidden_size, text_embedding_size, audio_embedding_size, 
drop_prob=0., max_text_length=405): 
        super(MMBiDAF, self).__init__() 
        self.emb = Embedding(embedding_size=text_embedding_size, 
                             hidden_size=hidden_size, 
                             drop_prob=drop_prob) 
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        self.a_emb = Embedding(embedding_size=audio_embedding_size,     # Since audio 
embedding size is not 300, we need another highway encoder layer 
                               hidden_size=hidden_size,                 # and we cannot increase the 
hidden size beyond 100 
                               drop_prob=drop_prob) 

        self.text_enc = RNNEncoder(input_size=hidden_size, 
                                   hidden_size=hidden_size, 
                                   num_layers=1, 
                                   drop_prob=drop_prob) 

        self.audio_enc = RNNEncoder(input_size=hidden_size,  
                                     hidden_size=hidden_size,  
                                     num_layers=1,  
                                     drop_prob=drop_prob) 

        self.image_enc = RNNEncoder(input_size=hidden_size, 
                                    hidden_size=hidden_size, 
                                    num_layers=1, 
                                    drop_prob=drop_prob) 

        self.image_keyframes_emb = ImageEmbedding(encoded_image_size=2) 

        self.bidaf_att_audio = BiDAFAttention(2*hidden_size,  
                                              drop_prob=drop_prob) 

        self.bidaf_att_image = BiDAFAttention(2*hidden_size,  
                                              drop_prob=drop_prob) 

        self.mod_t_a = RNNEncoder(input_size=8*hidden_size, 
                                         hidden_size=hidden_size, 
                                         num_layers=2, 
                                         drop_prob=drop_prob) 

        self.mod_t_i = RNNEncoder(input_size=8*hidden_size, 
                                         hidden_size=hidden_size, 
                                         num_layers=2, 
                                         drop_prob=drop_prob) 

        self.multimodal_att_decoder = MultimodalAttentionDecoder(hidden_size, 
                                                                 max_text_length, 
                                                                 drop_prob) 
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    def forward(self, embedded_text, original_text_lengths, embedded_audio, 
o r ig ina l_audio_lengths , t ransformed_images , o r ig ina l_ image_lengths , 
hidden_gru=None): 
        text_emb = self.emb(embedded_text)                                                          # 
(batch_size, num_sentences, hidden_size) 
        text_encoded = self.text_enc(text_emb, original_text_lengths)                               # 
(batch_size, num_sentences, 2 * hidden_size) 

        audio_emb = self.a_emb(embedded_audio)                                                      # 
(batch_size, num_audio_envelopes, hidden_size) 
        audio_encoded = self.audio_enc(audio_emb, original_audio_lengths)                           
# (batch_size, num_audio_envelopes, 2 * hidden_size) 

        original_images_size = transformed_images.size()                                             # 
(batch_size , num_keyframes, num_channels , t ransformed_image_size , 
transformed_image_size) 
        # Combine images across videos in a batch into a single dimension to be embedded 
by ResNet 
        transformed_images = torch.reshape(transformed_images, (-1, 
transformed_images.size(2), transformed_images.size(3), transformed_images.size(4)))    
# (batch_size * num_keyframes, num_channels, transformed_image_size, 
transformed_image_size) 
        image_emb = self.image_keyframes_emb(transformed_images)                                    
# (batch_size * num_keyframes, encoded_image_size, encoded_image_size, 2048) 
        image_emb = torch.reshape(image_emb, (image_emb.size(0), -1))                               
# (batch_size * num_keyframes, encoded_image_size * encoded_image_size * 2048) 
        image_linear_layer = nn.Linear(image_emb.size(-1), 300)                                     # 
Linear layer for linear transformation 
        image_emb = image_linear_layer(image_emb)                                                   # 
(batch_size * num_keyframes, 300) 
        image_emb = torch.reshape(image_emb, (original_images_size[0], 
original_images_size[1], -1))  # (batch_size, num_keyframes, 300) 
        image_emb = self.emb(image_emb)                                                             # 
(batch_size, num_keyframes, hidden_size) 
        image_encoded = self.image_enc(image_emb, original_image_lengths)                           
# (batch_size, num_keyframes, 2 * hidden_size) 

        # TODO: This will only work for batch_size = 1. Add support for larger batches 
        ones = torch.ones(1, 1, int(original_text_lengths[0])) 
        zeros = torch.zeros(1, 1, embedded_text.size(1) - int(original_text_lengths[0])) 
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        text_mask = torch.cat((ones, zeros), 2)                                           # (batch_size, 
padded_seq_length) 
         
        audio_mask = torch.ones(1, embedded_audio.size(1))                                          # 
(batch_size, padded_seq_length) 
        image_mask = torch.ones(1, original_images_size[1])                                         # 
(batch_size, padded_seq_length) 

        text_audio_att = self.bidaf_att_audio(text_encoded, audio_encoded, text_mask, 
audio_mask)   # (batch_size, num_sentences, 8 * hidden_size) 
        text_image_att = self.bidaf_att_image(text_encoded, image_encoded, text_mask, 
image_mask)   # (batch_size, num_sentences, 8 * hidden_size) 

        mod_text_audio = self.mod_t_a(text_audio_att, original_text_lengths)                        
# (batch_size, num_sentences, 2 * hidden_size) 
        mod_text_image = self.mod_t_i(text_image_att, original_text_lengths)                        
# (batch_size, num_sentences, 2 * hidden_size) 

        # if hidden_gru is None: 
        #     hidden_gru = self.multimodal_att_decoder.initHidden() 
        #     h idden_gru, f inal_out , sentence_dis t = 
self.multimodal_att_decoder(mod_text_audio, mod_text_image, hidden_gru, text_mask)        
# (batch_size, num_sentences, ) 
        # else: 
        #     h idden_gru, f inal_out , sentence_dis t = 
self.multimodal_att_decoder(mod_text_audio, mod_text_image, hidden_gru, text_mask) 

        out_distributions = self.multimodal_att_decoder(mod_text_audio, mod_text_image, 
hidden_gru, text_mask) 

#         print(len(out_distributions)) 
#         print(out_distributions[0].size()) 

        return out_distributions 
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11. Appendix B 
Code for Datasets.py 

import json 
import os 
import pickle 
import re 
import sys 
import logging 

import numpy as np 
import torch 
from PIL import Image 
from torch.utils.data import Dataset 
from nltk.tokenize import sent_tokenize 

class TextDataset(Dataset): 
    """ 
    A Pytorch dataset class to be used in the Pytorch Dataloader to create text batches 
    """ 
    def __init__(self, courses_dir, max_text_length=405): 
        """ 
        Args : 
             courses_dir (string) : The directory containing the embeddings for the 
preprocessed sentences  
        """ 
        self.courses_dir = courses_dir 
        self.text_embeddings_path = self.load_sentence_embeddings_path() 
        self.max_text_length = max_text_length 

    def load_sentence_embeddings_path(self): 
        transcript_embeddings = [] 

        # Get sorted list of all courses (excluding any files) 
        dirlist = [] 
        for fname in os.listdir(self.courses_dir): 
            if os.path.isdir(os.path.join(self.courses_dir, fname)): 
                dirlist.append(fname) 
         
        for course_number in sorted(dirlist, key=int): 
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            course_transcript_path = os.path.join(self.courses_dir, course_number, 
'sentence_features/') 
            text_embedding_path = [self.courses_dir + course_number + '/sentence_features/' 
+ transcript_path for transcript_path in sorted(os.listdir(course_transcript_path), 
key=self.get_num)] 
            transcript_embeddings.append(text_embedding_path) 

        return [val for sublist in transcript_embeddings for val in sublist]    #Flatten the list 
of lists 

    def get_num(self, str): 
        return int(re.search(r'\d+', str).group()) 

    def __len__(self): 
        return len(self.text_embeddings_path) 
     
    def __getitem__(self, idx): 
        self.embedding_path = self.text_embeddings_path[idx] 
        self.embedding_dict = torch.load(self.embedding_path) 
        word_vectors = torch.zeros(self.max_text_length, 300) 
        for count, sentence in enumerate(self.embedding_dict): 
            word_vectors[count] = self.embedding_dict[sentence] 
        word_vectors[len(self.embedding_dict)] = torch.zeros(1, 300) - 1            # End of 
summary token embedding 
        return word_vectors, len(self.embedding_dict) + 1                           # Added EOS to 
the original data 

class ImageDataset(Dataset): 
    """ 
    A PyTorch dataset class to be used in the PyTorch DataLoader to create batches. 

    Member variables: 
    self.image_paths (2D list) : A 2D list containing image paths of all the videos. 
                                 The first index represents the video, and the 
                                 second index represents the keyframe. 
    self.num_videos (int) : The total number of videos across courses in the dataset. 

    """ 
    def __init__(self, courses_dir, transform = None): 
        """ 
        Args: 
            courses_dir (string) : Directory with all the courses 
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            transform (torchvision.transforms.transforms.Compose) : The required 
transformation required to normalize all images 
        """ 
        self.courses_dir = courses_dir 
        self.transform = transform 
        self.num_videos = 0 
        self.image_paths = self.load_image_paths() 

    def get_num(self, str): 
        return int(re.search(r'\d+', re.search(r'_\d+', str).group()).group()) 
     
    def load_image_paths(self): 
        images = [] 

        # Get sorted list of all courses (excluding any files) 
        dirlist = [] 
        for fname in os.listdir(self.courses_dir): 
            if os.path.isdir(os.path.join(self.courses_dir, fname)): 
                dirlist.append(fname) 

        for course_dir in sorted(dirlist, key=int): 
            keyframes_dir_path = os.path.join(self.courses_dir, course_dir, 
'video_key_frames/') 
            for video_dir in sorted(os.listdir(keyframes_dir_path), key=int): 
                self.num_videos += 1 
                video_dir_path = os.path.join(keyframes_dir_path, video_dir) 
                keyframes = [os.path.join(video_dir_path, img) for img in 
os.listdir(video_dir_path) \ 
                            if os.path.isfile(os.path.join(video_dir_path, img))] 
                keyframes.sort(key = self.get_num) 
                images.extend([keyframes]) 

        return images 

    def __len__(self): 
        return self.num_videos 

    def __getitem__(self, idx): 
        transformed_images = [] 
        for image_path in self.image_paths[idx]: 
            image = Image.open(image_path) 
            if self.transform is not None: 
                image = self.transform(image) 
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            transformed_images.append(image) 
        return torch.stack(transformed_images) 

class AudioDataset(Dataset): 
    """ 
    A PyTorch dataset class to be used in the PyTorch DataLoader to create batches of the 
Audio. 
    """ 
    def __init__(self, courses_dir): 
        """ 
        Args: 
            courses_dir (String) : Director containing the MFCC features for all the 
                                 audio in a single course 
        """ 
        self.courses_dir = courses_dir 
        # self.audios_paths = sorted(os.listdir(self.courses_dir), key = self.get_num) 
        self.audios_paths = self.load_audio_path() 

    def load_audio_path(self): 
        audio_embeddings = [] 

        # Get sorted list of all courses (excluding any files) 
        dirlist = [] 
        for fname in os.listdir(self.courses_dir): 
            if os.path.isdir(os.path.join(self.courses_dir, fname)): 
                dirlist.append(fname) 
         
        for course_number in sorted(dirlist, key=int): 
            course_audio_path = os.path.join(self.courses_dir, course_number, 'audio-
features/') 
            audio_embedding_path = [self.courses_dir + course_number + '/audio-features/' + 
audio_path for audio_path in sorted(os.listdir(course_audio_path), key=self.get_num)] 
            audio_embeddings.append(audio_embedding_path) 

        return [val for sublist in audio_embeddings for val in sublist]     #Flatten the list of 
lists 

    def get_num(self, str): 
        return int(re.search(r'\d+', str).group()) 

    def __len__(self): 
        return len(self.audios_paths) 
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    def __getitem__(self, idx): 
        with open(self.audios_paths[idx], 'rb') as fp: 
            audio_vectors = pickle.load(fp) 
        audio_vectors = np.transpose(audio_vectors) 
        audio_vectors = torch.from_numpy(audio_vectors) 
        return audio_vectors 

class TargetDataset(Dataset): 
    """ 
    A Pytorch dataset class to be used in loading target datatset for training and evaluation 
purpose. 
    """ 
    def __init__(self, courses_dir): 
        """ 
        Args : 
             courses_dir (string) : The directory containing the entire dataset. 
        """ 
        self.courses_dir = courses_dir 
        self.target_sentences_path = self.load_target_sentences_path() 
        self.source_sentences_path = self.load_source_sentences_path() 

    def load_target_sentences_path(self): 
        target_sentences = [] 
        dirlist = [] 
        for fname in os.listdir(self.courses_dir): 
            if os.path.isdir(os.path.join(self.courses_dir, fname)): 
                dirlist.append(fname) 

        for course_number in sorted(dirlist, key=int): 
            target_path = os.path.join(self.courses_dir, course_number, 'ground-truth/') 
            target_sentence_path = [target_path + target_sentence for target_sentence in 
sorted([item for item in os.listdir(target_path) if os.path.isfile(os.path.join(target_path, 
item)) and '.txt' in item and '_' not in item], key=self.get_num)] 
            target_sentences.append(target_sentence_path) 

        return [val for sublist in target_sentences for val in sublist]    #Flatten the list of lists 

    def load_source_sentences_path(self): 
        source_sentences = [] 

        # Get sorted list of all courses (excluding any files) 
        dirlist = [] 
        for fname in os.listdir(self.courses_dir): 
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            if os.path.isdir(os.path.join(self.courses_dir, fname)): 
                dirlist.append(fname) 
         
        for course_number in sorted(dirlist, key=int): 
            source_path = os.path.join(self.courses_dir, course_number, 'transcripts/') 
            source_sentence_path = [source_path + transcript_path for transcript_path in 
sorted([item for item in os.listdir(source_path) if os.path.isfile(os.path.join(source_path, 
item)) and '.txt' in item], key=self.get_num)] 

            source_sentences.append(source_sentence_path) 

        return [val for sublist in source_sentences for val in sublist]    #Flatten the list of lists 

    def get_num(self, str): 
        return int(re.search(r'\d+', str).group()) 
     
    def __len__(self): 
        return len(self.target_sentences_path) 

    def __getitem__(self, idx): 
        lines = [] 
        try: 
            with open(self.source_sentences_path[idx]) as f: 
                for line in f: 
                    if re.match(r'\d+:\d+', line) is None: 
                        line = line.replace('[MUSIC]', '') 
                        lines.append(line.strip()) 
        except Exception as e: 
            logging.error('Unable to open file. Exception: ' + str(e)) 
        else: 
            source_text = ' '.join(lines) 
         
        source_text = source_text.lower() 
        source_sentences = sent_tokenize(source_text) 

        lines = [] 
        try: 
            with open(self.target_sentences_path[idx]) as f: 
                for line in f: 
                    if re.match(r'\d+:\d+', line) is None: 
                        line = line.replace('[MUSIC]', '') 
                        lines.append(line.strip()) 
        except Exception as e: 
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            logging.error('Unable to open file. Exception: ' + str(e)) 
        else: 
            target_text = ' '.join(lines) 

        # target_text = target_text.lower() 
        target_sentences = sent_tokenize(target_text) 
        for idx2 in range(len(target_sentences)): 
            target_sentences[idx2] = target_sentences[idx2].lower() 

        target_indices = [] 
        for target_sentence in target_sentences: 
            # target_indices.append(torch.Tensor([source_sentences.index(target_sentence)])) 
            try: 
                target_indices.append(torch.Tensor([self.get_index(source_sentences, 
target_sentence)])) 
            except Exception as e: 
                if False: 
                    print("Exception: " + str(e)) 
                    print(self.target_sentences_path[idx]) 
                    print(target_sentence) 
                    print('\n\n--------------------\n\n') 
                    print(source_sentences) 
                    print('\n-----------------------\n') 
                continue 
        target_indices.append(torch.Tensor([len(source_sentences)]))                        # 
Appended the EOS token 
         
        return torch.stack(target_indices), self.source_sentences_path[idx], 
self.target_sentences_path[idx] 

    def get_index(self, source_sentences, target_sentence): 
        for idx, sent in enumerate(source_sentences): 
            if target_sentence in sent: 
                return idx 
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12. Appendix C 
Code for encoding.py 

import numpy as np 
import torch 
import torchvision 
import torch.nn as nn 
import torch.nn.functional as F 

from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence 

class Embedding(nn.Module): 
    """ 
    Text Embedding layer used by MMBiDAF. 
    This implementation is based on the BiDAF implementation by Chris Chute. 

    Args: 
        word_vectors (torch.Tensor) : Pre-trained word vectors. 
        hidden_size (int) : Size of hidden activations. 
        drop_prob (float) : Probability of zero-in out activations. 
    """ 
    def __init__(self, embedding_size, hidden_size, drop_prob): 
        super(Embedding, self).__init__() 
        self.drop_prob = drop_prob 
        self.proj = nn.Linear(embedding_size, hidden_size, bias = False) 
        self.hwy = HighwayEncoder(2, hidden_size) 

    def forward(self, x): 
        emb = F.dropout(x, self.drop_prob, self.training)  # (batch_size, seq_len, 
embed_size) 
        emb = self.proj(emb)  # (batch_size, seq_len, hidden_size) 
        emb = self.hwy(emb)   # (batch_size, seq_len, hidden_size) 

        return emb 

class HighwayEncoder(nn.Module): 
    """Encode an input sequence using a highway network. 

    Based on the paper: 
    "Highway Networks" 
    by Rupesh Kumar Srivastava, Klaus Greff, Jürgen Schmidhuber 
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    (https://arxiv.org/abs/1505.00387). 

    Args: 
        num_layers (int): Number of layers in the highway encoder. 
        hidden_size (int): Size of hidden activations. 
    """ 
    def __init__(self, num_layers, hidden_size): 
        super(HighwayEncoder, self).__init__() 
        self.transforms = nn.ModuleList([nn.Linear(hidden_size, hidden_size) 
                                         for _ in range(num_layers)]) 
        self.gates = nn.ModuleList([nn.Linear(hidden_size, hidden_size) 
                                    for _ in range(num_layers)]) 

    def forward(self, x): 
        for gate, transform in zip(self.gates, self.transforms): 
            # Shapes of g, t, and x are all (batch_size, seq_len, hidden_size) 
            g = torch.sigmoid(gate(x)) 
            t = F.relu(transform(x)) 
            x = g * t + (1 - g) * x 

        return x 

class RNNEncoder(nn.Module): 
    """ 
    General-purpose layer for encoding a sequence using a bidirectional RNN. 

    This encoding is for the text input data.  
    The encoded output is the RNN's hidden state at each position, 
    which has shape (batch_size, seq_len, hidden_size * 2). 

    Args: 
        input_size (int) : Size of a single timestep in the input (The number of expected 
features in the input element). 
        hidden_size (int) : Size of the RNN hidden state. 
        num_layers (int) : Number of layers of RNN cells to use. 
        drop_prob (float) : Probability of zero-ing out activations. 
    """ 
    def __init__(self, input_size, hidden_size, num_layers, drop_prob = 0.): 
        super(RNNEncoder, self).__init__() 
        self.drop_prob = drop_prob 
        self.rnn = nn.LSTM(input_size, hidden_size, num_layers, 
                           batch_first = True, bidirectional = True, 
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                           dropout = drop_prob if num_layers > 1 else 0.) 

    def forward(self, x, lengths): 
        # Save the original padded length for use by pad_packed_sequence 
        orig_len = x.size(1) 

        # Sort by length and pack sequence for RNN 
        lengths, sort_idx = lengths.sort(0, descending = True) 
        x = x[sort_idx]    # (batch_size, seq_len, input_size) 
        x = pack_padded_sequence(x, lengths, batch_first = True) 

        # Apply RNN 
        x, _ = self.rnn(x) # (batch_size, seq_len, 2 * hidden_size) 

        # Unpack and reverse sort 
        x, _ = pad_packed_sequence(x, batch_first = True, total_length = orig_len) 
        _, unsort_idx = sort_idx.sort(0) 
        x = x[unsort_idx]  # (batch_size, seq_len, 2 * hidden_size) 

        # Apply dropout (RNN applies after all but the last layer) 
        x = F.dropout(x, self.drop_prob, self.training) 

        return x 

class ImageEmbedding(nn.Module): 
    """ 
    This is the encoder layer for the images. 

    The reference code has been taken from : 
    https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning/blob/master/
models.py 

    This is from the paper Show, Attend and Tell. 
    """ 
    def __init__(self, encoded_image_size = 14): 
        super(ImageEmbedding, self).__init__() 
        self.enc_image_size = encoded_image_size 

        # I have used ResNet to extract the features, I could probably experiment with VGG 
        resnet = torchvision.models.resnet101(pretrained = True) #Pretrained ImageNet 
ResNet-101 
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        # Remove linear and pool layers (since we are not doing classification) 
        modules = list(resnet.children())[:-2] 
        self.resnet = nn.Sequential(*modules) 

        # Resize image to fixed size to allow input images of variable sizes 
        self.adaptive_pool = nn.AdaptiveAvgPool2d((encoded_image_size, 
encoded_image_size)) 

        self.fine_tune() 
     
    def forward(self, images): 
        """ 
        Forward propagation of the set of key frames extracted from the video. 

        Args: 
            images (torch.Tensor) : The input image with dimension (batch_size, 3, 
image_size, image_size) 
         
        Return: 
            Encoded images 
        """ 
        out = self.resnet(images)      # (batch_size, 2048, image_size/32, image_size/32) 
        out = self.adaptive_pool(out)  # (batch_size, 2048, encoded_image_size, 
encoded_image_size) 
        out = out.permute(0, 2, 3, 1)  # (batch_size, encoded_image_size, 
encoded_image_size, 2048) 
        return out 

    def fine_tune(self, fine_tune = True): 
        """ 
        Allow or prevent the calculation of gradients for convolutional blocks 2 through 4 of 
the encoder. 

        Args: 
            fine_tune (bool) : Predicate to allow or prevent the gradient calculation. 
        """ 

        for p in self.resnet.parameters(): 
            p.requires_grad = False 
        # If fine-tuning, only fine-tune convolutional blocks 2 through 4 
        for c in list(self.resnet.children())[5:]: 
            for p in c.parameters(): 
                p.requires_grad = fine_tune 
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class AudioEncoder(nn.Module): 
    """ 
    This is the Audio encoding layer which encodes the audio features using BiLSTM. 

    The code is inpired from the implementation of the paper Listen, Attend and Spell by 
Alexander-H-Liu. 
    https://github.com/Alexander-H-Liu/End-to-end-ASR-Pytorch/blob/master/src/asr.py 

    Args: 
        enc_type : The encoder architecture available with - VGGBiRNN, BiRNN, RNN. 
        sample_rate : Sample rate for each RNN layer, concatenated with _. For each layer, 
                      the length of ouput on time dimension will be input/sample_rate. 
        sample_style : The down sampling mechanism. concat will concatenate multiplt 
time steps, 
                       according to sample rate into one vector, drop will drop the unsampled 
timesteps. 
        dim : Number of cells for each RNN layer (per direction), concatenated with _. 
        dropout : Dropout between each layer, concatenated with _. 
        rnn_cell : RNN Cell of all layers. 
    """ 
    def __init__(self, example_input, enc_type, sample_rate, sample_style, dim, dropout, 
rnn_cell): 
        super(AudioEncoder, self).__init__() 
        # Setting 
        input_dim = example_input.shape[-1] 
        self.enc_type = enc_type 
        self.vgg = False 
        self.dims = [int(v) for v in dim.split('_')] 
        self.sample_rate = [int(v) for v in sample_rate.split('_')] 
        self.dropout = [float(v) for v in dropout.split('_')] 
        self.sample_style = sample_style 

        # Parameters checking 
        assert len(self.sample_rate)==len(self.dropout), 'Number of layer mismatch' 
        assert len(self.dropout)==len(self.dims), 'Number of layer mismatch' 
        self.num_layers = len(self.sample_rate) 
        assert self.num_layers>=1,'AudioEncoder should have at least 1 layer' 

        # Construct AudioEncoder 
        if 'VGG' in enc_type: 
            self.vgg = True 
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            self.vgg_extractor = VGGExtractor(example_input) 
            input_dim = self.vgg_extractor.out_dim 

        for l in range(self.num_layers): 
            out_dim = self.dims[l] 
            sr = self.sample_rate[l] 
            drop = self.dropout[l] 

             
            if "BiRNN" in enc_type: 
                setattr(self, 'layer'+str(l), RNNLayer(input_dim,out_dim, sr, rnn_cell=rnn_cell, 
dropout_rate=drop, 
                                                       bidir=True,sample_style=sample_style)) 
            elif "RNN" in enc_type: 
                setattr(self, 'layer'+str(l), RNNLayer(input_dim,out_dim, sr, rnn_cell=rnn_cell, 
dropout_rate=drop, 
                                                       bidir=False,sample_style=sample_style)) 
            else: 
                raise ValueError('Unsupported Encoder Type: '+enc_type) 

            # RNN ouput dim = default output dim x direction x sample rate 
            rnn_out_dim = out_dim*max(1,2*('Bi' in enc_type))*max(1,sr*('concat'== 
sample_style))  
            setattr(self, 'proj'+str(l),nn.Linear(rnn_out_dim,rnn_out_dim)) 
            input_dim = rnn_out_dim 

     
    def forward(self,input_x,enc_len): 
        if self.vgg: 
            input_x,enc_len = self.vgg_extractor(input_x,enc_len) 
        for l in range(self.num_layers): 
            input_x, _,enc_len = getattr(self,'layer'+str(l))(input_x,state_len=enc_len, 
pack_input=True) 
            input_x = torch.tanh(getattr(self,'proj'+str(l))(input_x)) 
        return input_x,enc_len 
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13. Appendix D 
Code for Attention.py 

import numpy as np 
import torch 
import torchvision 
import torch.nn as nn 
import torch.nn.functional as F 

from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence 

class BiDAFAttention(nn.Module): 
    """ 
    Bidirectional attention computes attention in two directions: 
    The text attends to the modality (image/audio) and the modality attends to the text. 

    The output of this layer is the concatenation of: 
    [text, text2image_attention, text * text2image_attention, text * image2text_attention] 
or 
    [text, text2audio_attention, text * text2audio_attention, text * audio2text_attention] 
    based on the modality used. 

    This concatenation allows the attention vector at each timestep, along with the 
embeddings  
    from previous layers, to flow through the attention layer to the modeling layer. 
    The output has shape (batch_size, text_length, 8 * hidden_size) 

    Args: 
        hidden_size (int) : Size of hidden activations. 
        drop_prob (float) : Probability of zero-ing out activations. 
    """ 
    def __init__(self, hidden_size, drop_prob=0.1): 
        super(BiDAFAttention, self).__init__() 
        self.drop_prob = drop_prob 
        self.text_weight = nn.Parameter(torch.zeros(hidden_size, 1)) 
        self.modality_weight = nn.Parameter(torch.zeros(hidden_size, 1)) 
        self.text_modality_weight = nn.Parameter(torch.zeros(1, 1, hidden_size)) 
        for weight in (self.text_weight, self.modality_weight, self.text_modality_weight): 
            nn.init.xavier_uniform_(weight) 
        self.bias = nn.Parameter(torch.zeros(1)) 

    def forward(self, text, modality, text_mask, modality_mask): 
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        batch_size, text_length, _ = text.size() 
        modality_length = modality.size(1) 
        s = self.get_similarity_matrix(text, modality)                     # (batch_size, text_length, 
modality_length) 
        text_mask = text_mask.view(batch_size, text_length, 1)          # (batch_size, 
text_length, 1) 
        modality_mask = modality_mask.view(batch_size, 1, modality_length)    # 
(batch_size, 1, modality_length) 
        s1 = masked_softmax(s, modality_mask, dim=2)                       # (batch_size, 
text_length, modality_length) 
        s2 = masked_softmax(s, text_mask, dim=1)                        # (batch_size, 
text_length, modality_length) 

        # (batch_size, text_length, modality_length) x (batch_size, modality_length, 
hidden_size) => (batch_size, text_length, hidden_size) 
        a = torch.bmm(s1, modality) 

        # (batch_size, text_length, text_length) x (batch_size, text_length, hidden_size) => 
(batch_size, text_length, hidden_size)  
        b = torch.bmm(torch.bmm(s1, s2.transpose(1,2)), text) 

        x = torch.cat([text, a, text * a, text * b], dim = 2)            # (batch_size, text_length, 4 
* hidden_size) 

        return x 

    def get_similarity_matrix(self, text, modality): 
        """ 
        Get the "similarity matrix" between text and the modality (image/audio). 

        Concatenate the three vectors then project the result with a single weight matrix. 
This method is more 
        memory-efficient implementation of the same operation. 

        This is the Equation 1 of the BiDAF paper. 
        """ 
        text_length, modality_length = text.size(1), modality.size(1) 
        text = F.dropout(text, self.drop_prob, self.training)           # (batch_size, text_length, 
hidden_size) 
        modality = F.dropout(modality, self.drop_prob, self.training)         # (batch_size, 
modality_length, hidden_size) 

        # Shapes : (batch_size, text_length, modality_length) 

�75



        s0 = torch.matmul(text, self.text_weight).expand([-1, -1, modality_length]) 
        s1 = torch.matmul(modality, self.modality_weight).transpose(1,2).expand([-1, 
text_length, -1]) 
        s2 = torch.matmul(text * self.text_modality_weight, modality.transpose(1,2)) 
        s = s0 + s1 + s2 + self.bias 

        return s 

def masked_softmax(logits, mask, dim=-1, log_softmax=False): 
    """Take the softmax of `logits` over given dimension, and set 
    entries to 0 wherever `mask` is 0. 

    Args: 
        logits (torch.Tensor): Inputs to the softmax function. 
        mask (torch.Tensor): Same shape as `logits`, with 0 indicating 
            positions that should be assigned 0 probability in the output. 
        dim (int): Dimension over which to take softmax. 
        log_softmax (bool): Take log-softmax rather than regular softmax. 
            E.g., some PyTorch functions such as `F.nll_loss` expect log-softmax. 

    Returns: 
        probs (torch.Tensor): Result of taking masked softmax over the logits. 
    """ 
    mask = mask.type(torch.float32) 
    masked_logits = mask * logits + (1 - mask) * -1e30 
    softmax_fn = F.log_softmax if log_softmax else F.softmax 
    probs = softmax_fn(masked_logits, dim) 

    return probs 

class MultimodalAttentionDecoder(nn.Module): 
    """ 
    Used to calculate the hierarchical attention of the image/audio aware text vectors 
    The code is inspired from the PyTorch tutorials :  
    https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html 
    Args: 
        hidden_size (int) : The hidden size of the input features 
    """ 
    def __init__(self, hidden_size, max_text_length, drop_prob=0.1): 
        super(MultimodalAttentionDecoder, self).__init__() 
        self.hidden_size = hidden_size 
        self.drop_prob = drop_prob 
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        self.max_text_length = max_text_length 
        self.gru = nn.GRU(hidden_size * 2, hidden_size * 2, batch_first=True) 
        self.att_audio = nn.Linear(self.hidden_size * 4, self.max_text_length) 
        self.att_img = nn.Linear(self.hidden_size * 4, self.max_text_length) 
#         self.att_mm = nn.Linear(self.hidden_size * 6, self.max_text_length) 
        self.att_mm_audio = nn.Linear(self.hidden_size * 4, 1) 
        self.att_mm_img = nn.Linear(self.hidden_size * 4, 1) 
        self.att_combine = nn.Linear(self.hidden_size * 6, self.hidden_size * 2) 
        self.out = nn.Linear(self.hidden_size * 2, self.max_text_length) 

    def forward(self, audio_aware_text, image_aware_text, hidden_gru, text_mask): 
        out_distributions = [] 

        for idx in range(self.max_text_length): 
            if hidden_gru is None: 
                hidden_gru = self.initHidden() 
             
            audio_aware_text_curr = audio_aware_text[:, idx:idx+1, :]   # (batch_size, 1, 2 * 
hidden_size) 
#             print(type(audio_aware_text_curr)) 
            image_aware_text_curr = image_aware_text[:, idx:idx+1, :]   # (batch_size, 1, 2 * 
hidden_size) 
            a t t e n t i o n _ w e i g h t s _ a u d i o = 
F.softmax(self.att_audio(torch.cat((audio_aware_text_curr, hidden_gru), 2)), dim=2)   # 
(batch_size, 1, max_text_length) 
            # print('attention_weights_audio {}'.format(attention_weights_audio.size())) 
            attention_applied_audio = torch.bmm(attention_weights_audio, 
audio_aware_text)  # (batch_size, 1, 2 * hidden_size) 
            # print('attention_applied_audio {}'.format(attention_applied_audio.size())) 
            a t t e n t i o n _ w e i g h t s _ i m g = 
F.softmax(self.att_img(torch.cat((image_aware_text_curr, hidden_gru), 2)), dim=2)   # 
(batch_size, 1, max_text_length) 
            attention_applied_img = torch.bmm(attention_weights_img, image_aware_text)  
# (batch_size, 1, 2 * hidden_size) 

    #         a t t e n t i o n _ w e i g h t s _ m m = 
F.softmax(self.att_mm(torch.cat((attention_applied_audio, attention_applied_img, 
hidden_gru), 2)), dim=1) 
            a t t e n t i o n _ w e i g h t s _ m m _ a u d i o = 
F.softmax(self.att_mm_audio(torch.cat((attention_applied_audio, hidden_gru), 2)), 
dim=2)   # (batch_size, 1, 1) 
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            # p r i n t ( ' a t t e n t i o n _ w e i g h t s _ m m _ a u d i o 
{}'.format(attention_weights_mm_audio.size())) 
            a t t e n t i o n _ w e i g h t s _ m m _ i m g = 
F.softmax(self.att_mm_img(torch.cat((attention_applied_img, hidden_gru), 2)), dim=2)     
# (batch_size, 1, 1) 
            # p r i n t ( ' a t t e n t i o n _ w e i g h t s _ m m _ a u d i o 
{}'.format(attention_weights_mm_audio.size())) 
    #         attention_applied_mm = torch.bmm(attention_weights_mm, 
attention_applied_audio) + torch.bmm(attention_weights_mm, attention_applied_img) 
            attention_applied_mm = torch.bmm(attention_weights_mm_audio, 
a t t e n t i o n _ a p p l i e d _ a u d i o ) + t o r c h . b m m ( a t t e n t i o n _ w e i g h t s _ m m _ i m g , 
attention_applied_img)  # (batch_size, 1, 2 * hidden_size)  
            # print('attention_applied_mm {}'.format(attention_applied_mm.size())) 

            f i n a l _ a t t e n t i o n _ w e i g h t s = 
a t t e n t i o n _ w e i g h t s _ m m _ a u d i o [ 0 ] * a t t e n t i o n _ w e i g h t s _ a u d i o [ 0 ] + 
attention_weights_mm_img[0]*attention_weights_img[0] 
             
    #         print('final_attention_weights: {}'.format(final_attention_weights.size())) 
             
            final_out = torch.cat((audio_aware_text_curr, image_aware_text_curr, 
attention_applied_mm), 2)      # (batch_size, 1, 6 * hidden_size) 
            final_out = self.att_combine(final_out)     # (batch_size, 1, 2 * hidden_size) 
            final_out = F.relu(final_out) 
            final_out, hidden_gru = self.gru(final_out, hidden_gru)     # (batch_size, 1, 2 * 
hidden_size) 
            final_out = masked_softmax(self.out(final_out), text_mask, log_softmax=False)       
# (batch_size, 1, max_text_length) 

            final_out = final_out.squeeze(1) 
            out_distributions.append(final_out) 

        return out_distributions 

    def initHidden(self): 
        return torch.zeros(1, 1, self.hidden_size * 2) 
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14. Appendix E 
Code for train.py 

""" 
Train a model on the MMS Dataset. 
""" 
import copy 
import logging 
import os 
import pickle 
import random 
from collections import OrderedDict 
from json import dumps 

import numpy as np 
import seaborn as sns 
import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import torch.optim as optim 
import torch.optim.lr_scheduler as sched 
import torch.utils.data as data 
import torchvision 
import torchvision.transforms as transforms 
from datasets import * 
from models import MMBiDAF 
from PIL import Image 
from rouge import Rouge 
# from tensorboardX import SummaryWriter 
from tqdm import tqdm 
from ujson import load as json_load 
from nltk.tokenize import sent_tokenize 

def main(course_dir, text_embedding_size, audio_embedding_size, hidden_size, 
drop_prob, max_text_length, out_heatmaps_dir, num_epochs=100): 
    # Get sentence embeddings 
    train_text_loader = torch.utils.data.DataLoader(TextDataset(course_dir, 
max_text_length), batch_size = 1, shuffle = False, num_workers = 2) 

    # Get Audio embeddings 
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    train_audio_loader = torch.utils.data.DataLoader(AudioDataset(course_dir), batch_size 
= 1, shuffle = False, num_workers = 2) 
     
    # Preprocess the image in prescribed format 
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 
0.225]) 
    transform = transforms.Compose([transforms.RandomResizedCrop(256), 
transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize,]) 
    train_image_loader = torch.utils.data.DataLoader(ImageDataset(course_dir, 
transform), batch_size = 1, shuffle = False, num_workers = 2) 

    # Load Target text 
    train_target_loader = torch.utils.data.DataLoader(TargetDataset(course_dir), 
batch_size = 1, shuffle = False, num_workers = 2) 

    # Create model 
    model = MMBiDAF(hidden_size, text_embedding_size, audio_embedding_size, 
drop_prob, max_text_length) 

    # Get optimizer and scheduler 
    optimizer = optim.Adadelta(model.parameters(), 1e-4) 
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR 

    # Let's do this! 
    step = 0 
    model.train() 
    model.float() 
    hidden_state = None 
    epoch = 0 
    loss = 0 
    eps = 1e-8 

    with torch.enable_grad(), tqdm(total=max(len(train_text_loader.dataset), 
len(train_image_loader.dataset), len(train_audio_loader.dataset))) as progress_bar: 
        for (batch_text, original_text_length), batch_audio, batch_images, 
(batch_target_indices, source_path, target_path) in zip(train_text_loader, 
train_audio_loader, train_image_loader, train_target_loader): 
            loss = 0 
            # Setup for forward 
            batch_size = batch_text.size(0) 
            optimizer.zero_grad() 
            epoch += 1 
            # Required for debugging 

�80



            batch_text = batch_text.float() 
            batch_audio = batch_audio.float() 
            batch_images = batch_images.float() 

            # Forward 
            out_distributions = model(batch_text, original_text_length, batch_audio, 
torch.Tensor([batch_audio.size(1)]), batch_images, torch.Tensor([batch_images.size(1)]), 
hidden_state) 
             
            for batch, target_indices in enumerate(batch_target_indices): 
                for timestep, target_idx in enumerate(target_indices.squeeze(1)): 
#                     print(target_idx) 
                    prob = out_distributions[timestep][batch, int(target_idx)] 
#                     print("Prob = {}".format(prob)) 
                    loss += -1 * torch.log(prob + eps) 
#                     print("Loss = {}".format(loss)) 

            # Generate summary 
            print('Generated summary for iteration {}: '.format(epoch)) 
            summary = get_generated_summary(out_distributions, original_text_length, 
source_path) 
            print(summary) 
             
            # Evaluation 
            rouge = Rouge() 
            rouge_scores = rouge.get_scores(source_path, target_path, avg=True) 
            print('Rouge score at iteration {} is {}: '.format(epoch, rouge_scores)) 

            # Generate Output Heatmaps 
            sns.set() 
            for idx in range(len(out_distributions)): 
                out_distributions[idx] = out_distributions[idx].squeeze(0).detach().numpy()      
# Converting each timestep distribution to numpy array 
            out_distributions = np.asarray(out_distributions)   # Converting the timestep list 
to array 
            ax = sns.heatmap(out_distributions) 
            fig = ax.get_figure() 
            fig.savefig(out_heatmaps_dir + str(epoch) + '.png') 

            # Backward 
            loss.backward(retain_graph=True) 
            optimizer.step() 
            scheduler.step() 
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            print('Loss for Epoch {} : '.format(epoch)) 
            print(loss) 
#             break 

def get_generated_summary(out_distributions, original_text_length, source_path): 
    out_distributions = np.array([dist[0].cpu().detach().numpy() for dist in 
out_distributions])  # TODO: Batch 0 
    generated_summary = [] 
    for timestep, probs in enumerate(out_distributions): 
        if(probs[int(original_text_length)] == np.argmax(probs)): 
            break 
        else: 
            max_prob_idx = np.argmax(probs, 0) 
            generated_summary.append(get_source_sentence(source_path[0], 
max_prob_idx-1)) 

            # Setting the generated sentence's prob to zero in the remaining timesteps - 
coverage? 
            out_distributions[:, max_prob_idx] = 0 
     
    return generated_summary 

def get_source_sentence(source_path, idx): 
    lines = [] 
    try: 
        with open(source_path) as f: 
            for line in f: 
                    if re.match(r'\d+:\d+', line) is None: 
                        line = line.replace('[MUSIC]', '') 
                        lines.append(line.strip()) 
    except Exception as e: 
        logging.error('Unable to open file. Exception: ' + str(e)) 
    else: 
        source_text = ' '.join(lines) 
        source_sentences = sent_tokenize(source_text) 
        for i in range(len(source_sentences)): 
            source_sentences[i] = source_sentences[i].lower() 
        return source_sentences[idx] 
     
     
if __name__ == '__main__': 
    course_dir = '/home/anish17281/NLP_Dataset/dataset/' 
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    text_embedding_size = 300 
    audio_embedding_size = 128 
    hidden_size = 100 
    drop_prob = 0.2 
    max_text_length = 405 
    num_epochs = 100 
    out_heatmaps_dir = '/home/amankhullar/model/output_heatmaps/' 
    main(course_dir, text_embedding_size, audio_embedding_size, hidden_size, 
drop_prob, max_text_length, out_heatmaps_dir, num_epochs) 
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